LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO
1.1	Graphical representation of Moor's law	2
1.2	Interconnect structure	6
1.3	Comparison of interconnects	6
1.4	Resistance geometry	8
1.5	Resistivity of Cu wires dimensions	9
1.6	MOS Capacitance model	11
1.7	Lumped RC model	12
1.8	Lumped interconnect models	12
1.9	Distributed RC model	13
1.10	Load capacitance of CMOS gate	15
1.11	Basic compression principle	17
1.12	Technology scale down	21
3.1	Block diagram of basic compression	
	principle	54
3.2	Classification of data compression	55
3.3	Huffman code tree	58
3.4	Classification of lempel ziv family	64
3.5	Flow diagram of simple byte compression	
	algorithm	69
3.6	Flow diagram of simple byte decompression	
	algorithm	72
3.7	Output of Text data compression	73
3.8	Analysis of BPC for different compression	
	techniques	75

FIGURE NO.	TITLE	PAGE NO.
3.9	Compression ratio	76
3.10	Compression ratios of different compression	
	techniques	79
3.11	Compression factor analysis for different	
	compression techniques	79
3.12	Analysis of saving percentages for different	
	compression techniques	81
4.1	Deep submicron model for N bit data bus	84
4.2	Block diagram of proposed multi coding	
	technique	91
4.3	Hamming distance estimator	93
4.4	XOR Stack	94
4.5	Simulation output for input data B ₁ ^k	96
4.6	Simulation output for input data B ₂ ^k	97
4.7	Simulation output for input data B ₃ ^k	98
4.8	Comparison of transition count in multi	
	coding technique	100
4.9	Percentage of energy saved in multi coding	
	technique	101
4.10	Comparison of energy saving percentage	102
5.1	Power reduction design aspects	105
5.2	Static power calculation model	108
5.3	Equivalent circuit for dynamic power	
	calculation	109
5.4	Energy per transition	111
5.5	Power analysis chart	111
5.6	Two dimension (2D)VLSI design flow	113

FIGURE NO.	TITLE	PAGE NO.
5.7	Two dimension (2D) design parameter	113
5.8	Three dimension (3D) VLSI design flow	115
5.9	Three dimension (3D) design parameter	115
5.10	Relationship between different abstraction	
	level & Power estimation techniques	116
5.11	RTL shematic overview of encoder	117
5.12	RTL schematic of encoder output	118
5.13	Synthesis report of area requirement	118
5.14	Synthesis report of delay	119
5.15	Power analysis flow chart	120
5.16	Power output using Xpower	121
6.1	Pass transistor logic	125
6.2	NMOS Pass transistor showing transmission	
	of 0V	126
6.3	NMOS Pass transistor showing transmission	
	of V_{DD}	126
6.4	PMOS pass transistor	127
6.5	Arithmetic adder used in HD estimator	127
6.6	Conventional static full adder	128
6.7	Static differential cascode voltage switch full	
	adder	129
6.8	Dual rail domino logic full adder	130
6.9	Double Pass transistor logic full adder	131
6.10	Static differential split level logic full adder	132
6.11	Dynamic differential cascode voltage switch	
	logic full adder	133

FIGURE NO.	TITLE	PAGE NO
6.12	Complementary Pass transistor logic full	
	adder	134
6.13	Propagation delay V _S power dissipation of	
	different CMOS logic design	136
6.14	Transistor count for different CMOS logic	
	design	137
6.15	Power dissipation for different CMOS logic	
	design	138
6.16	Propagation delay for different CMOS logic	
	design	139
6.17	Area of different CMOS logic design	140
6.18	Simulation result of CPL adder	141