

Bhudevi B, Weinstock D: **Detection of bovine viral diarrhea virus in formalin fixed paraffin embedded tissue sections by real time RT – PCR (Taqman).**

Bingham PC, McFadden AM, Wang J, Kittelberger R, Clough RR, Tham KM:
Investigation of a pig herd with animals seropositive for classical swine fever and where porcine circovirus-associated disease had been diagnosed.
New Zealand Veterinary Journal 2010, 58: 253-259.

Bjorklund H, Lowings P, Stadejek T, Vilcek S, Greiser-Wilke I, PatonD, Belak S:

Blackburn SD, Wherry EJ: **IL-10, T cell exhaustion and viral persistence.** *Trends in Microbiology* 2007, 15:143–146.

Dahle J and Liess B: **A review on classical swine fever infections in pigs: Epizootiology, clinical disease and pathology.** *Comparative Immunology, Microbiology and Infectious Diseases* 1992, 15, no. 3: 203-11.

Deng MC, Huang CC, Huang TS, Chang CY, Lin YJ, Chien MS, Jong MH:
Phylogenetic analysis of classical swine fever virus isolated from Taiwan.

Depner K, Bunzenthal C, Heun-Munch B, Strebelow G, Hoffmann B, Beer M:
Diagnostic evaluation of a real-time RT-PCR assay for routine diagnosis of
classical swine fever in wild boar. *Journal of Veterinary Medicine B* 2006,
53:317–320.

Depner K, Hoffmann B, Beer M: Evaluation of real-time RT-PCR assay for the

Depner KR, Greiser-Wilke I, Moennig V, Liess B: Breed dependent variations
influence the outcome of classical swine fever virus infection in pigs. In:

Desai GS, Sharma A, Kataria RS, Barman NN, Tiwari AK: 5'–UTR-based

Dewulf J, Koenen F, Mintiens K, Denis P, Ribbens S, de Kruijf A: Analytical
performance of several classical swine fever laboratory diagnostic

Dewulf J, Laevens H, Koenen F, Mintiens K, de Kruijf A: Efficacy of E2- sub-unit
marker and C-strain vaccines in reducing horizontal transmission of

Gajewski TF, Goldwasser E, Fitch FW: Anti-proliferative effect of IFN gamma in immune regulation. II. IFN-gamma inhibits the proliferation of murine bone marrow cells stimulated with IL-3, IL-4, or granulocyte-macrophage colony-stimulating factor. Journal of Immunology 1988; 141:2635–42.

Galindo RC, Ayllon N, Smrdel KS, Boadella M, et al.: Gene expression profile suggests that pigs (Sus scrofa) are susceptible to Anaplasma phagocytophilum but control infection. Parasites & Vectors 2012, 5:181

Le Poiter MF, Mesplede A, Vannier P: Classical swine fever and other pestiviruses

Postel A, Schmeiser S, Perera CL, Rodriguez LJP, Lepoureau MTF, Becher P: **Classical swine fever isolates from Cuba form a new subgenotype 1.4.** *Veterinary Microbiology* 2012b, DOI:10.1016/j.vetmic.2012.07.045.

Rao P0, Satyanarayana K: **Annual Technical Report of Disease Investigation Officer, Andhra Pradesh 1961.**

Sanchez-Cordon PJ, Romanini S, Salguero FJ, Ruiz-Villamor E, Carrasco L, Gomez-Villamandos JC: A histopathological, immunohistochemical and

glycoprotein against classical swine fever virus infection in domestic pigs.

Veterinary Microbiology 2010, 142:51–58.

Uttenthal A, Storgaard T, Oleksiewicz MB, de-Stricker K: Experimental infection with the Paderborn isolate of classical swine fever virus in 10-week-old pigs: determination of viral replication kinetics by quantitative RT-PCR,
virus isolation and antigen ELISA. Veterinary Microbiology 2003, 92:197–212.

Zuckermann FA, Husmann RJ, Schwartz R, Brandt J, Mateu de Antonio E, Martin S: