CHAPTER EIGHT

BIBLIOGRAPHY

174
1. WHO report diet nutrition and prevention of chronic disease, report of WHO study group.

2. Maseri A.
 Ischemic heart disease: A rational basis for clinical practice and clinical research.

3. Davies M. J.
 Stability and instability: The two faces of coronary atherosclerosis.
 The Paul Dudley White Lecture 1995;
 Circulation 1996;94:2013-2020

 Eur Heart J 2002; 21: 1502-1516

5. Murray CJL, Lopez A.D, eds.

 Global burden of cardiovascular disease, part I: general considerations, the epidemiologic transition, risk factors and impact of urbanization.
 Circulation 2001; 104: 2746-2753.
7. Kullar R. K.
Lp (a), lipid levels and coronary angiography profile of young patients with myocardial infarction.
Cardiology Today Vol.7 No.1 Jan-feb 2003

8. Rajmohan L, Deepa R Mohan V.
Risk factors for CAD in Indians: emerging trends

9. Isser H.S.
Lipoprotein (a) and lipid levels in young patients with myocardial infarction and their first – degree relative.
Indian Heart J2001:53:463-466.

10. Satyendra Tewani, Deepak Gupta, Sudeep Kumar.
Plasma lipoprotein (a) levels in patients with pulmonary arterial hypertension.
Indian Heart Journal 2001; 53: 56 – 60.

11. Harendra kumar.
Emerging new risk factors for coronary artery disease.
Indian journal of cardiology 2002 Vol-3 Jan-Des. 53-56.

13. Saxena K.K.
Congestive heart failure in Diabetes.

14. Bahal V.K.
Management of coronary artery disease in patients with diabetes mellitus.
15. Enas E A, Yusuf S, Mehta J L.
Prevalence of coronary artery disease in Asian India.

Diabetes & coronary artery disease: Importance of risk factors.
Cardiology Today, Vol. 5 No. 1, Jan-Feb 2001

17. David M. Mron, Paul M Ridkar, Thomas A.
Risk factors & the prevention of coronary heart disease.
The Heart- Vol 1, 9th Edition HURST, 1175-95

18. Johan A., Farmer M.D. & Antonia M. Gotto,
Risk factors for coronary artery disease.

Serum fibrinogen & C-reactive protein levels predict major adverse cardiac events in unstable angina.

20. Young D.S. Effects of drugs on clinical laboratory tests, 4th ed. AACC, 1995

Fibrinogen and homocysteine levels in coronary artery disease

22. Braunwald E.
Unstable angina: A classification
Homeostatic factors & the risk of myocardial infarction or sudden death in
patients with angina pactoris, european concerted action on thrombosis &
disabilities, angina pectoris study group;.
N. England Journal Medicine, 1995; 332; 635-641.

24. Haver Kate F, Thompson S.G,Pyks S.D, Gattimore Jr. Pepys M.B,
Production of C - reactive protein & risk of coronary events in stable &
unstable angina, European concerted action on thrombosis & disabilities
Angina Pectoris Study Group, Lancet 1997; 349;462-466.

25. Michael G, Phillip A.
Heart Anatomy - The PACE – MI Trial.
Pace maker and beta – blocker therapy after myocardial infarction.

The Cardiovascular System (Heart)
U.S. Department of Health& Human Services., National Institute of Health,
National Heart and Blood Institute, Diseases and Condition Index.pg-1-4. 10
may 2005.

27. Tortora , Derrickson
Principles of anatomy and physiology, 11th edition
The cardiovascular system: The Heart.2006

28. Cotaran, Kumar & Collins
Robins Pathologocal Basis of disease

29. Malgorzta Batnik
Glucose regulation and coronary artery disease.
Studies on prevalence, recognition and prognostic implicns,2005.9-17.
30. Reddy K.S. Cardiovascular Disease in India.
World Health Stat 1993: 4b. 101-107

31. Enas E. A., Yusuf S., Mehata J.L.
Prevalence of coronary artery disease in Asian Indians.
Am. J Cardiology, 1992; 70, 945-949.

32. Chadda S.H., Radhakrishnan S., Ramchandran K.K., Gopinath M,
Epidemiological study of coronary heart disease in urban population of Delhi.

33. Lowns P.J. Lamb P. Waston R.D., Ellis K.E., Shing S.P., Littler WA et al.
Influence of racial origin of admission rates of patients with suspected myocardial Infarction in Birmingham.

34. Dwivedi S. Awasthy N.
Familial aggregation of coronary risk factors – an illustrative pedigree,
South Asian preventive Cardiology 1999: 3; 60-63.

35. Dwivedi S. Shyam Singh, Melkani G.C., Sanjeev Sharma
Hypertension, central obesity & coronary artery disease in three generations of a family.

36. Coronary Artery Disease (Int.)
Coronary atherosclerosis (CAD) information at medtronic.
Medtronic, Inc. 2008.

37. Heart Attack & acute coronary syndrome In – depth
How Stuff Works, Inc. Pg. 1-3. 2008

38. John J.M. Bhatt D.L.
Emerging risk factors for atherosclerosis.
Indian Heart J, 2007; 59; 28-37
39. Rajeev Gupta
Coronary heart disease epidemiology in India;
lesson learnt & future direction

40. Kaul Upkar A. Sing Sandip, Nair Girish M.
Coronary risk factors common & unique to women.

41. K.K. Sethi
Management of hypertension; role of antenolol in reducing cardiovascular
Morbidity & mortality

42. John A. Farmer M.D. & Antoni O.M.
Risk factors for coronary artery disease.
Heart disease A Text Book Of Cardiovascular Medicine.

43. Enas A. Senthil Kumar, Vijaya Juthra.
Coronary artery disease in women.
Indian Heart J -2001; 53;282-292.

44. Mohan Bhargava
Diabetes Mellitus & ischemic heart disease.
Cardiology Today, Vol 6, No. 1 Jan-Feb 2002.

Quantification of plasma lipoprotein in pri. & sec, prevention of coronary
artery disease.

46. Wilken DEL, Wang XLL, Dudman NTB.
The apo A,B Lp (a) of coronary risk back to Kindergarten.
47. Mayer E.L, Jacobson D.W., Robinson K.

48. Made T.W., Poulteer N., Sever P.
 Fibrinogen & other clotting factors in cardiovascular disease with particular
 reference to smoking in cardiovascular disease risk factors & intervention.

49. Bery E.M.
 Dietary fatty acids in the management of diabetes mellitus.
 Am J Clin Nutr 1997 ;66 (suppl.) ; 9915-9975.

50. Glassman A.H., Shapiro P.A.
 Depression & the course of coronary artery disease.
 Am J Psychiatry 1998 ;155:4-11

51. Jean-Claude Tardif
 Oxidative stress & coronary heart disease
 Cardiology Rounds, 2003 ; 7 ; 1-6

52. Huether S.E., Kathryn Mc Cane.
 Alteration of cardiovascular function - understanding pathophysiology

53. Libby.
 Chlamydia Pneumoniae infection, inflammation & heat shock protein 60
 immunity in asthma & coronary heart disease
 American Heart Association, 2002.

54. Harsh Mohan
 A Text book of pathology
55. Stary.
Lucimar aparecida francoso, veronica coates anatomicopathological evidences of the beginning of atherosclerosis in infancy & adolescence
Circulation, 1995; 92: 13461-62

56. Steinberg D.
Hypercholesterolemia and inflammation in atherogenesis- two sides of the same coin.

57. Hansson G. K.
Inflammation, atherosclerosis, and coronary disease

58. Getz G S.
Immune function in atherogenesis.
J Lipid Res. 2005; 46: 1-10

Innate and adaptive immunity in pathogenesis of atherosclerosis.

60. Binder C.J. Chang M.K, Shaw P.X.
Innate and acquired immunity in atherogenesis
Nat Med., 2002; 8; 1218-1226

61. National Cholesterol Education Program (NCEP)
Highlights of the reports of the expert panel on blood cholesterol levels in children & adolescents, Pediatrics, 1992; 89; 495-501

63. Ross R.
The pathogenesis of atherosclerosis; a perspective for the 1990s,
Nature 1993;362;801-9

64. Ross R, Glomest J.A
The Pathogenesis of atherosclerosis.

65. Fusteeer V, Badimon L., Badimon JJ, Chesebru JH.
The pathogenesis of coronary artery disease & the acute coronary syndrome.

66. Stary H.C., Chandler A.B., Glagov S.
A definition of initial, fatty streak & intermediate lesions of atherosclerosis. A report from the committee on vascular lesion of council on atherosclerosis.
Circulation, 1994; 89; 2462-78.

67. Kovanen P.T.
Artheroma formation: Defective control in the intimal round-trip of cholesterol

68. Stary H.C., Chandler A.B., Dismore R.E.,
Definition of advanced types of atherosclerosis lesion & a histological classification of atherosclerosis; a report from the committee on vascular lesions of the council on atherosclerosis.
Circulation, 1995;92;1355-74.

Diabetes care, 26 (3), March 2003: 917-930.

70. Goodall T.
Self-management of diabetes mellitus: A critical review.
71. Ponder, Stephan W,
 Type 2 Diabetes Mellitus in teens.

 “Diagnosis and classification of diabetes mellitus”
 Diabetes Care., (2005): 537-542

73. Centers for Disease Control and Prevention.

 Gestational Diabetes Mellitus.

75. National Institute of Child Health And Human Development
 Managing gestational diabetes: A patient guide to a healthy pregnancy 2001
 National Institute of Health, publication No. 04

76. Siminerio, Linda M, and Terri Travis
 Educating the patient with secondary diabetes.
 Speaker Handout book.

77. Monson J.E, Colditz G.A, Stampfer M.J,
 A prospective study of maturity- onset diabetes and risk of coronary heart
disease and stroke in women.
 Arch Int Med, 1991; 151:1141

78. Ruderman N.B, Haudenschild C.
 Diabetes as an atherogenic factor.
 Prog. Cardiovascular Dis, 1984; 26: 373
79. Kannal WB, McGee DL.
 Diabetes and cardiovascular disease.
 The Framingham Study. JAMA 1979;214;2035-2038.

80. Coft J.B, Giles W.H, Pollard R.A.
 National trends in the initial hospitalization for heart failure.

81. Haffner S.M., Lohto S. Ronema T.
 Mortality from coronary heart disease in subjects with type 2 diabetes and in non diabetic subjects with and without prior myocardial infarction.

82. Butler R, MacDonal T.M, Struthers A.D.
 The clinical implications of diabetic heart disease.

83. Saxena K.K.
 Congestive heart failure in diabetes.

84. Chae C, Glynn R, Manson J.
 Diabetes predicts congestive heart failure risk in the elderly.

85. Melchior T, Rask-Madsen C, Torp-Pedersen.
 The impact of heart failure on prognosis of diabetic and non-diabetic patients with myocardial infarction. A 15 year follow-up study.

86. Tmmis A.D.
 Diabetic heart disease-Clinical considerations.
 Heart, 2001; 85:463-469.
87. Mak K, Molteno D, Granger C.

88. McGuire D.K, Emanuelsson H, Granger CB.
Influence of diabetes mellitus on clinical outcome across the spectrum of acute coronary syndromes.
Findings from the GUSTO-IIb Study.

Scientific statement for healthcare professional from the American Heart Association.
Circulation 1999;100:1134-46.

90. Gerick JE,
The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity.

91. Chisholm D.J, Campbell L.V, Karegen E.W.
Pathogenesis of the insulin resistance syndrome (syndrome X).
Clin Exp Pharmacol Physiol, 1997;24:782-84

92. Stern M. P.
Diabetes as cardiovascular disease - The "common soil" hypothesis
Diabetes, 1995;44:369-374

93. Plutzky J
Inflammation in atherosclerosis and diabetes mellitus.
Rev Endocr Metab Disord, 2004;255-259
94. Zieglar D.
Type 2 diabetes as an inflammatory cardiovascular disorder.

95. Ridker P.M, Hennekens C.H, Buring J.E, Rifai N.
C-reactive protein and other markers of inflammation in the production of cardiovascular disease in women.

96. Blake G.J., Ridker P.M.
Inflammatory biomarkers and cardiovascular risk prediction.

97. Pickup J.C.
Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes.
Diabetes care, 2004; 27: 813-823

98. Pickup J.C., Mattock M.B., Chusney G.D., Burt D.
NIDDM as a disease of the immune system: association of acute phase reactants and interleukin-6 with metabolic syndrom X.
Diabetologia, 1997; 40: 1286-1292.

99. Pickup J.C, Crook M.A.
In type 2 diabetes mellitus a disease of the innate Immune system ?

100. Hundal R.S, Petersen K.F, Mayerson A.B.
Mechanism by which high dose aspirin improves glucose metabolism in type-2 diabetes.

101. Ebeling P, Teppo A.M, Koislinen H.A ,
Trogitazone reduces hyperglycaemia and selectively acut-phase proteins in patients with type II diabetes.
Diabetologia 1999; 42 : 1433-1438
Effect of rosiglitazone treatment on nontraditional markers of cardiovascular
disease in patients with type 2 diabetes mellitus.
Circulation, 2002; 106; 679-684.

103. Freeman D.J, Norrie J, Sattar N.
Pravastatin and the development of diabetes mellitus: evidence for a protective
treatment effect in the west of Scotland coronary prevention study.
Circulation 2002; 106: 679

104. Pyozo Tatami, Hiroshi Mabuchi
Intermediate- density lipoprotein and cholesterol-rich VLDL in angiographically
determined coronary artery disease.
Circulation, Vol. 64 No.6 Dec 1981.

105. Pamela C. Champe
Lippincott’s illustrated Reviews
2nd edition 1994, 213-221

106. Tyrold H.A.
Overview of clinical trials of cholesterol lowering in relationship to
epidemiologic studies.

107. Bhal V.K.
Association of plasma lipoproteins with angiographically defined coronary
artery disease.
EHJ May-June—1995, P243-245.

108. Thind Inderjit S.
Signification of high density and total cholesterol, triglycerides in acute
myocardial infarction. — A case control study
109. Hamsten A, Walldius A.

110. Matti Nikkila
 High density lipoprotein cholesterol and triglycerides as markers of angiographically assessed coronary artery disease. Br. Heart J, 1990; 63: 78-81

111. Philips N.R.
 Plasma lipoproteins and progression of coronary artery disease evaluated by angiography and clinical events. Circulation, 1993

112. Joya Ghash

113. Berg K.A.

114. Utermann G.
 The mysteries of lipoprotein (a) Science, 1989; 246: 904-910.

115. Mclean J.W, Tomlison J.E, Kuang W.J.
 DNA sequence of human apolipoprotein (a) is homologous to plasminogen. Nature, 1987;330;132-137

116. Berglund L, Ramakrishnan R.
117. Van Der Hoek Y.Y, Wittekoek M. E, Beisiegel U
The apolipoprotein Kringle IV repeats which differ from the major repeat Kringle are present in variably- sized isoforms.
Hum Mol. Genet, 1993; 2; 369-366

118. Koschinsky ML, Beisigel U, Henne-Bruns D, et al
Apolipoprotein (a) size heterogeneity is related to variable number of repeat sequence in its mRNA.

119. Gavish D, Azrolan N, Breslow J.
Plasma Lp(a) concentration is inversely correlated with the ratio of Kringle IV/ Kringle V encoding domains in the apo (a) gene. J.
Clin Invest, 1989; 84; 2021 -2027.

120. Kraft H.G, Kochil S, Menzel H.J.
The apolipoprotein (a) gene – a transcribed hypervariable locus controlling plasma lipoprotein (a) concentration.
Hum Genet, 1992; 90: 220 – 230

121. Rader D.J. Cain W, Ikewaki K.
The inverse association of plasma lipoprotein (a) concentrations with apolipoprotein (a) isform size is not due to differences in LP (a) catabolism but to differences in production rate.

122. Trismikas S, Lau H.K, Han K. R.
Percutaneous Coronary intervention results in a acute increase in oxidized phospholipids and lipoprotein (a): short term and long term immunologic response to oxidized low – density lipoprotein.

123. Yano Y. Shimokawa K, Okada Y.
Immunolocalization of lipoprotein (a) in wounded tissues.
Histochem Cytochem, 1997; 45; 559 – 558.
124. Thillet J, Doucet C, Chapman J.
Elevated lipoprotein(a) levels and small apo(a) isoforms are compatible with longevity: evidence from a large population of French centenarians.
Atherosclerosis, 1998; 136; 389 – 394

125. Dangas G, Mehran R, Harpel PC.
Lipoprotein (a) and inflammation in human coronary atheroma association with the severity of clinical presentation.
J Am coll cardiol, 1998; 32; 2035 – 2042.

126. Caplice N.M, Panetta C, Peterson T.E.
Lipoprotein (a) binds and inactivates tissue factor pathway inhibitor: a novel link between lipoproteins and thrombosis.
Blood, 2001; 98:2980-2987

127. Uecher C, Ullrich H, Ritter M.
Lipoprotein(a) up – regulates at the expression of the plasminogen activator inhibitor 2 in human blood myocytes.

The inverse association of plasma lipoprotein (a) concentrations with apolipoprotein (a) isoform size is not due to difference in Lp (a) catabolism but to differences in production rate.

129. Gethanjali P. S, Jacob Jose V, kanagasabapathy A.S.
Lipoprotein (a) phenotypes in south Indian patients with coronary artery disease.
Indian Heart J, 2002: 54; 50 53.

130. Satyendra Tiwari, Deepak Gupta, Sudeep Kumar.
Plasma lipoprotein (a) levels in patients with pulmonary arterial hypertension.
131. Berg K.
 A new serum type system in man: The Lp - system.

132. Uterman G.
 The mysteries of Lipoprotein (a)

133. Ablers J.J, Adolphson H, Hazzard W.R.

134. Marcovina S. M, Albers J.J., Jacobs D.R.
 Lipoprotein (a) Concentration and apolipoprotein (a)
 Phenotypes in Caucasians and African – Americans.
 Arterioscler Thromb, 1993; 13; 1037 – 1045

135. Bovet P.
 High prevalence of cardiovascular risk factors in the seychelles.

136. Patil Uttam , Gambhir J. K.
 Apolipoprotein (a), polymorphism and plasma lipoprotein (a) levels.
 Indian Heart Journal, 2000; 52, 171 – 172.

137. Gupta R, Vasis S, Bahal V.K, Wasir H.S.
 Correlation of lipoprotein (a) to angiographically defined coronary artery
diseases in Indians.

138. Kant J. A, Fornace A.J, Saxe ,
 Evolution and organization of the fibrinogen locus on chromosome 4: gene
duplication accompanied by transposition and inversion.
 Proc Natl Acad Sci USA, 1985; 82: 2344 – 2348
139. Folsom A R.
Epidemiology of Fibrinogen.

140. Herrick S. Blanc, Brude O, Gray A, Laurent G.
Fibronogen.

141. Smith E.B, keen G. A, Grant A,
Fate of fibrinogen in human arterial intima.

142. Robani L.E, Loscalzo J.
Recent observations of the role of hemostatic determinants in the development of atherothrombotic plaque.

143. Andreotti F, Burzotta F, Maeri A.
Fibrinogen as a marker of inflammation: a clinical view.

144. Lacroix A, Schwetz N.
Factor I Deficiency (Fibrinogen deficiency)

145. Van der Waal A.C, Becker A. E, Van der Loos C.M, Dus P. K.
Site of intimal rupture or erosion of thrombosed atherosclerotic plaques is characterised by an inflammatory process irrespective of the dominant plaque morphology.
Circulation, 1994; 89: 36 – 44.

146. Arbustini E, De servi S, Bramucci.
Comparison of coronary lesions obtained by directional coronary atherectomy in unstable angina, stable angina and restenosis after either atherectomy or angioplasty.
Am J cardiol, 1995; 75: 675 – 682.
147 Davies M.J.
A macro and micro view of coronary vascular insult in ischemic heart disease.
Circulation, 1990; 82; 1138 – 1146.

148. Kochi K, Takebayashi S, Hiroki T, Nobuyoshi M.
Significance of adventitial inflammation of the coronary artery in patients
with unstable angina: results at autopsy:
Circulation, 1985;71:709-716

149. Hansson GK, Holm J, Jonasson L
Detection of activated T. lymphocytes in the human atherosclerotic plaque.
Am J pathol, 1989; 135: 169-175

150. Crea F, Biasucci L M, Buffon A.
Role of inflammation in the pathogenesis of unstable coronary artery disease.
Am J Cardiol, 1997;80 10E-16E

151. Liuzzo G, Biasucci LM, Gallimore JR,
The prognostic value of C-reactive protein and serum amyloid , a protein in
severe unstable angina.

Elevation of C-reactive protein in active coronary disease.
Am J Cardiol, 1990;65:168-172

153. Biasucci L, Vitelli A, Liuzzo G.
Elevated levels of interleukin in unstable angina
Circulation, 1996;94:874-877

154. Ernet E, Resch K.L.
Fibrinogen as a cardiovascular risk factor: A meta analysis and review of
literature.
Ann Intern Med, 1993;188: 956-963
Fibrinogen is a prognostic marker independent of troponin T in unstable coronary artery disease.
Circulation, 1996; 94 (Suppl): 1-323A

156. Eurostroke Project
J.Epidemiol community Health 2002; ,56 (Suppl.1), 114-118.

157. AcevedoM.
Found that patients with CAD tended to have higher fibrinogen levels than those without the disease.
Am Heart J, 2002; 143: 277-82

158. Kannel W.B. Wolf P. A. Casteelli W P.
Fibrinogen and risk of cardiovascular disease.
The Framingham Study.

159. Thomson S.G.
Homostatic factors and the risk of myocardial infarction.

160. Yarnell J.W.G. Barker I.A. Bainton D.
Plasma fibrinogen a powerful predictor of CHD

161. Fu and Nair
Age effect on fibrinogen and albumin synthesis in humans.
Am j Physiology 275 (Endocrinol Metab 38);1998. E 1203- E1030

Fibrinogen.
Public health 26, Aust NZJ. (2002).
144 – 149
Essential arterial hypertension and stone disease.

Interacellar Na+ and Ca2+ activities in essential hypertension.
Clinical Science, (1982). 63, 41S-43S.

165. Touyz R. M., and Milne F. J.,
Alterations in intracellular cations and cell membrane ATPase activity in patients with malignant hypertension.

166. Fu Y., Wang, S Lu, Z., H. and Li S.
Erythrocyte and Plasma Ca2+, Mg2+ and cell membrane adenosine triphosphatase activity in patients with essential hypertension.

167. Touyz, R.M. Milne, F.J. and Raeinach S. G.
Intracellular Mg2+, Ca2+, Na2+ and K+ in platelets and erythrocytes of essential hypertension patients; relation to blood pressure.

168. Yeolekar M.E.
Calcium antagonists: Newer Dimensions.

169. Haffner S.M.
Coronary heart disease in patients with diabetes.

170. Haffner S N, Lehto S, Ronnemma T, Pyorla K, Laakso M
Mortality from Coronary artery heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without myocardial infarction.
171. Sowers J.R. Epstein M.
Risk factor for arterial disease in diabetes: hypertension in Diabetic angiopathy.

172. Garcia M.J, Me Namara P.M, Gordon T, Kannel W.B:
Morbidity and mortality in diabetes in the Framingham population: Sixteen-Year follow-up study.

173. Stamler J, Vaccaro O, Neaton J.D,
Wentworth D: Diabetes, other risk factors and 12 year cardiovascular mortality for men screened in the multiple risk factor intervention trial.

Predicting coronary events with coronary calcium: Pathophysiologic and clinical problems.

175. O’ Rourke R.A, Brundage B.H, Froelicher V.F,Greenland P, Grundy S.M.
American college of cardiology / American Heart Association Export Consensus document on electron beam computed tomography for the diagnosis and prognosis of coronary artery disease.

Prognostic value of coronary electron - beam computed tomography for coronary heart disease events in asymptomatic populations.
A M J Cardiol, 2000, 85: 945 – 948.

177. Detrano R, Carr J:
Computed tomography of the heart.
In text book of cardiovascular disease.
178. Raggi P, Callister T Q, Cooil B, He Zx.
Identification of patients at increased risk of first unheralded acute myocardial infarction by electron – beam computed tomography.

179. Rifkin R. D, Parisi A. F, Folland E.
Coronary calcification in the diagnosis of coronary artery disease.
Am J Cardiol, 1979; 44: 141 – 147.

180. Doherty T.M, Detrano R.C.
Coronary artery calcification as an active process; a new perspective on an old problem.

181. Tillett W.S, Francis T.
Serological reactions in pneumonia with a non – protein somatic fraction of the pneumococcus.

182. Macintyree S.S.
C – reactive protein.

183. Shrine A.K, Metcalfe A.M, Cartwright J. R.
C – reactive protein in limulus polyphemus haemalymph: crystal structure of limulus SAP.
J Mol Biol, 1992; 290 : 997 – 1008

184. Malhotra anita
C- reactive protein as an indepent predictor of risk of coronary artery disease.
Cardiology today vol- VI, No-2: March –April-2002;89-91

185. Ross R.
The pathogenesis of atherosclerosis: a persepctive for the 1990s.
Nature,1993; 362; 801 – 809
186. Ross R.
Atherosclerosis – an inflammatory disease.

187. Skaien K, Gustaffson M, Rydberg K. E.
Subendothelial retention of atherogenic lipoproteins in early atherosclerosis.

188. Hansson G.K.
Inflammation, atherosclerosis and coronary artery disease.

189. Torzewski J, Torzewski M, Bowyer DE.
C-reactive protein frequently co-localizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries.

190. Pasceri V, Willerson J. T, Yeh E.T.
Direct pro-inflammatory effect of C-reactive protein on human endothelial cells.
Circulation, 2002; 102; 2165–2168.

191. Devraj S, Xu. Dy, Jialal I.
C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis.

192. Venugopal S. K, Devaraj S, Yuhanna I.
Demonstration that C-reactive protein decreases NOS expression and bioactivity in human aortic endothelial cells.
C - Reactive protein - mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis.

194. Daneberg H. D, Szalai A.J, Swaminathan R.V.
Increased thrombosis after arterial injury in human C - reactive protein - transgenic mice.
Circulation, 2003: 108; 512 - 515

195. Paul A, Kok W, Yechoor V.
C - Reactive protein accelerates the progression of atherosclerosis in apolipoprotein E -- deficient mice.

196. Bhurke A P, Tracy R P, Kolodgire F.
Elevated C - Reactive protein values and atherosclerosis in sudden coronary death: association with different pathologies.

197. Pepys M P.

Production of C-reactive protein and risk of coronary events in stable and unstable angina.
Linzzog, Biaucci L. M, Gallimore J.R.
The prognostic value of C-reactive protein and serum amyloid - A protein in severe unstable angina.
N Engl J Med, 1994; 331; 416-424

Preprocedural serum levels of C-reactive protein predict early complications and late restenosis after coronary angioplasty.
J Am Coll Cardiol, 1999; 34:1512-1521

201. Danesh J, Whincup J, Walker M.
Low grade inflammation and coronary heart disease: Prospective study and updated metaanalysis.
BMJ. 2000; 371: 199-204

Distribution of C-reactive protein and its relation to risk factors and coronary heart disease risk estimation in the National Health and Nutrition Examination Survey III.

203. Yudkin J. S, Stebhauwer CAD, Emeis J. J, Coppack S.W.
C-reactive protein in healthy subjects: associations with obesity, insulin resistance and endothelial dysfunction: a potential role for cytokines origination from adipose tissue.
205. Zehrack J. S. Anderson J. L, Maycock C.A.
The intermountain heart collaborative study group in predicting long-term risk of death or acute myocardial infarction in patients with stable or unstable angina pectoris or acute myocardial infarction.
Am J Cardiol, 2002 ; 89: 145-149

206. Tamakoshi k, Yatsuya H, Kondo T, Hori Y, Ishikawa M, Zhang H.
The Metabolic Syndrome is associated with elevated circulating C-reactive protein in healthy reference range, a systemic low-grade inflammatory state.

207. Liu S, Manson J. K, Buring J. E.
Relation between a diet with a high glycemic load and plasma concentrations of high-sensitive C-reactive protein in middle-aged women.

C-reactive protein predicts death in patients with previous premature myocardial infarction. A 10-year followup study.

209. Ross E, Biasucci L.M, Cittero F.
Circulation, 2002; 105; 200.

Elevated C– Reactive protein constitutes an independent predictor of advanced carotid plaques in dyslipidemia subjects.
211. Pepys M.B, Berger A.
The renaissance of C–Reactive protein.

212. Pearson T.A.
New tools for coronary risk assessment; What are their advantages and limitations?

Atherosclerosis, 1999; 145; 375–379.

214. Pudil R, Piderman V, Drejsek J.
The effect of trimetasidine on C–reactive protein, Cytokines and adhesion molecules in the course of acute myocardial infarction.

215. Kannel W.B.
Coronary heart disease risk factors in the elderly.

216. Fuster V, Badiman L, Badiman J.
The pathogenesis of coronary artery disease and acute coronary syndromes.

217. Davies M.J.
Pathophysiology of acute coronary syndromes

218. Hiresh P. D, Hillis L.D, Campbell W.B
Release of prostaglandins and thromboxane in to the coronary circulation in patients with ischemic heart disease.
Measurement of Serum C - Reactive protein concentration in myocardial ischaemia and infarction.

220. Liuzzo G, Biasucci L. M, Gallimore J.R.
The prognosis value of C – reactive protein and serum amyloid- A protein in severe unstable angina.

221. Mold C, Gewurz H, Du clas T.W.
Regulation of complement activation by C – reactive protein.
Immunopharmacology, 1999; 42; 23 – 30.

222. Paul M. Ridler, Rifai N, Clearfield M.
Measurement of C – reactive protein for the targeting of statin therapy in the primary prevention of acute coronary syndromes.

223. Pasceri V, Willerson J.T, Yeh E.T.
Direct Proinflammatory effect of C – reactive protein on human endothelial cells.

224. Davis U.C.Thomas E. Radecki M.D.
Risk Factors.
Circulation 2002: 4-14.

225. Gertler M. M., Garn S. M. and Levine S. A.
Serum Uric acid in relation to age and physique in health and in coronary heart disease.
Ann Intern. Med, 1951, 34, 1421 – 1431
226. Alderman, M. H
Uric acid and cardiovascular risk.

227. Johnson, R. J., Kang, D. H, Feig, D.
Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease?
Hypertension, 41, 1183 – 1190.

228. Barker J, Drishanan. E., Chen, L, Schumacher, H. R.
Serum uric acid and cardiovascular disease. Recent developments, and where do they leave us?

229. Hayden, M.R,Tyagi. S. C.
Uric acid; A new look at an old risk marker for Cardiovascular disease, metabolic Syndrome, and type 2 diabetes mellitus: The Urate redox shuttle.

230. Strasak A, Ruttmann E, Brant L.
Serum Uric Acid Risk of Cardiovascular Mortality: A Prospective Long -- Term study of 83 683 austrian Men. (E pub. ahead of print).

Serum uric acid and long-term mortality from stroke, Coronary heart disease and all cause.

232. Hoieggon A, Alderman M.H, Kjeldsen S.E.
The impact of serum uric acid on cardiovascular outcomes in the LIFE study.
Kidney Int, 2004;65;1041-9
233. Madsen T.E, Muhlestein J.B, Carlquist J.F.
Serum uric acid independently predicts mortality in patients with significant, angiographically defined coronary disease.

234. Culleton B F, Larson M G, Kannel WB, Lery D: -
Serum uric acid and risk for Cardiovascular disease and death: the Framingham Heart Study.

235. Fang J, Alderman M.H.

Uric acid levels as a risk factor for Cardiovascular and all – cause mortality in middle age.

237. Freedman D. S, Williamson DF, Gunter F W, Byers
Relation of Serum uric acid to mortlity and ischemic heart disease. The NHANESI Epidemiologic follow – up study.

238. Alderman M.H.
Uric Acid and Cardiovascular risk.

Relation between Serum Uric acid and risk of Cardiovascular disease in essential hypertension.
Association of Serum uric acid with all cause and cardiovascular disease mortality and incient myocardial infarction in the MONICA Augsburg cohort.
Epidemiology 1999, 10 : 391 – 397.

241. Brand F. N, Mcgee D. L, Kannel W.B.
Hyperuricemia as a risk factor of coronary heart disease: the Framingham study.

242. Wannamethee S.G, Shaper A. G, Whincup P.H:
Serum Urate in the risk of major coronary heart disease events.

243. Franse L V, Pahor M, D: Ban M.
Serum uric acid, diuretic treatment and risk of cardiovascular events I the Systolic Hypertension in the Elderly program (SHEP)

244. Johnaon R. J, Feig D, Kivilghn S, Danellis J.
Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease?

245. Aldearman M, Aiyer K. J.
Uric acid : role in cardiovascular disease and effect of Losartan.

Prognostic significance of serum creatinine and uric acid in older Chinese patients with isolated systolic hypertension.
Clinical aspects of coronary heart disease: an analysis of 100 cases in patients of 23 to 40 years of age with myocardial infarction.

248. Kannel W. B, Castelli W. P, McNamara P.M.
The Coronary Profile: 12 year follow – up in the Framingham study.

249. Kyhn E.
Studien ueber das Hypertonie – Hyperglyka “ mie – Hyperurika” miesyndrom.
Zentralblatt fuer Innere Medizin, 1923, 44 :105 – 127

251. Zavaroni I, Mazza S, Fantussi M.
Changes in insulin and lipid metabolism in males with asymptomatic hyperuricaemia.

252. Hayden M.R, Tyagi S.C.
Intimal Redox stress: accelerated atherosclerosis in metabolic Syndrome and type 2 diabetes mellitus.
Cardiovasc Diabetol 2002, 1 (1); 3.

Should C – reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk?
Uric acid Stimulates monocyte chemo–attractant production in vascular smooth muscle cells vis motogenactivated protein kinase and cyclooxygenase – 2.

255. Olexa P, Olerova M, Gonserick J.
Uric acid – a marker for systemic inflammatory response in patients with congestive heart failure?

256. Hu P, Seeman T.E, Harris T.B, Reuben D.B.
In serum acid level associated with all cause mortality in high – functioning older persons: Mac Arthur Studies of Successful aging?

257 .Bickel C, Rupprecht H.J.
Serum uric acid as an independent predictor of mortality in patients with angiographically proven coronary artery disease.
American Journal of Cardiology 89 (1): 12-7

258. Magda S, Jussara C, Ronivan L, Vanessa D.
Fatty acid composition of serum lipid fractions type 2 diabetic patients with microalbuminuria.

259. Kaushik Bhowmick AVM Kutty Shetty H.V.
Glycemic control modifies the association between microalbuminuria and C-reactive protein in type 2 diabetes mellitus.
Indian Journal of Clinical Biochemistry, 2007:22 (2) 53-59

260. De Jong P.E, Curhan G.C.
Screening, monitoring, and treatment of albuminuria: Public health perspectives.
261. Doqi K.
 Clinical practice guidelines on hypertension and antihypertensive
 agents in chronic kidney disease.

 In patients with type 2 diabetes, hypertension, and microalbuminuria, Ace
 inhibitors and ARBS.

 Hostetter TH: Chronic kidney disease awareness, prevalence, and trends

264. Jones CA, Francis ME, Eberhardt MS, Chavers B, Coresh J, Engelgau M,
 Microalbuminuria in the US population: Third National Health and Nutrition
 Examination Survey.

265. Karalliedde J, Viberti G:
 Microalbuminuria and cardiovascular risk.

 Association of albuminuria with systolic and diastolic left ventricular
 dysfunction in type 2 diabetes: The Strong Heart Study.

 Left ventricular geometry and function in patients with essential
 hypertension and microalbuminuria.
Microalbuminuria as a marker of silent myocardial ischaemia in IDDM patients.

Microalbuminuria is independently associated with ischaemic electrocardiographic abnormalities in a large non-diabetic population. The PREVEND (Prevention of REnal and Vascular ENdstage Disease) study.

Microalbuminuria modifies the mortality risk associated with electrocardiographic ST-T segment changes.

271. Borch-Johnsen K, Feldt-Rasmussen B, Strandgaard S, Schroll M, Jensen JS:
Urinary albumin excretion. An independent predictor of ischemic heart disease.

272. Tuttle K.R, Puhlman M.E, Cooney S.K.
Urinary albumin and insulin as predictors of coronary artery disease: An angiographic study.

300. Gralnick, H R; Evatt, B.L; Gray A; Huseby, R, M.; Roberts, H; Triplett D. A., Fibrinogen was estimated by DADE BEHRING Proposed guidelines for standardized procedure for the determination of fibrinogen in biological standards. Villanova, P A; National Committee for Clinical Laboratory Standards; 1982;2(13):417-8.

301. Young D.S.
Lipoprotein (a) was estimated by Lp(a) turbilated (Latex turbidimetry) Effects of drugs on clinical Laboratory test. 4th ed. AACC press 1995

302. Tietz N. W., (ED)
Calcium was estimated by OCPC method, End point. O- Cresolpthein V/V Colorimetric
Textbook of Clinical Chemistry, WB Sanders (1986) P.1350

303. Lars Olof Honson.
Current Opinion in Infect.
C-reactive protein was estimated by Turbilatex.
Diseases, 1997; 10; 196 –201.

304. Shesparad M.D, Mezzachi R.D.
Uric acid was estimated of Dynamic extended stability with lipid clearing agent modified trinder method, End point.
Clin Biochem Revs, 1983 ; 4; 61 – 7

305. Young D. S.
Microalbuminuria by Immunoturbidimetric method.

HDL cholesterol and other lipids in coronary heart disease. The cooperative lipoprotein phenotyping study.
Circulation 55: 767,1977
Serum lipoproteins and coronary heart disease in a population study of Hawaiians men.

308. Costas R, G Garcia-palmieri M.R, Nazario E, Sorlie P.D.
Relation of lipids, weight and physical activity to incidence of coronary heart disease.
Am J Cardiol, 1978, 42; 653.

309. Kannel W.B, Casteoli W.P, Gordon T
Cholesterol in the prediction of atherosclerotic disease. New perspectives based on the Framingham study.

310. Miller M.E, Thelle D.S, Forde C.H
The Tromso heart study, high density lipoprotein and coronary heart disease. A prospective case control study.

311. Cohn P.F, Gabbay S.I, Welglicki W.B.
Serum lipids levels in angiographically defined coronary artery disease.

313. Eric J. Topal
Text book of Cardiovascular Medicine

314. Ryozo Tatami, Hiroshi Mabuchi, Kosh Veda,
Intermediate – density lipoprotein and cholesterol – rich very low density lipoprotein in Angiographically Determined Coronary Artery Disease.
315. Gandhi H. R.
Risk Factor for CAD in diabetes mellitus, particularly in Asian.

316. Jarrett R J, Keen H, Rattpm. SE. Manley, DR Matthews, R. R. Holman
Risk Factors for Coronary artery disease in non-insulin dependent diabetes mellitus Hyperglycemia and diabetes Mellitus.

A prospective study of Coronary heart disease in relation to fasting insulin, Glucose and diabetes.
Diabetes Care 1997; 20: 935 –942

318. Brownlee M
Glycation products and the pathogenesis of diabetic complications.

Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus.
United kingdom prospective diabetes study (UKPDS : 23)
BMJ 1998; 316:823 – 828 (14 March)

321. Sheth T, Yusuf S.
Controlling rate of heart disease and lung cancer among south Asians, Chinese and European Canadians examined in an international context.
322. Trommsdorff M, Kochi S, Lingenhel A, Kronenberg F.
 A pentanucleotide repeat polymorphism in the 5' control region of the
 apolipoprotein (a) gene is associated with lipoprotein (a) plasma
 concentration in Caucasians

323. Jacob Josr V, Baruch, Selvakumar D, Selvakumar R.
 Serum lipoprotein (a) levels in ischemic heart disease.
 JAPI 1997; 45: 766 – 768.

324. Scanu A.M.
 Lipoprotein (a): a genetic risk factor for premature coronary artery disease.

 Determinants of severely coronary artery disease in Australian men &
 women.

326. Scanu A.M, Lawn R.M, Berg K.
 Lipoprotein (a) and atherosclerosis.

327. Hopkins P.N. Wall, Hunt S.C.
 Lipoprotein (a) interactions with Lipids and non lipid risk factors in early
 familial coronary artery disease.

328. Rubin L.J.
 Primary Pulmonary Hypertension.
329. Voe Lkel N. F., tuder R.M, Weir E. K.
Pathophysiology of primary pulmonary hypertension from physiology to molecular mechanisms.

Lipoprotein (a) modulation of endothelial cell surface fibrinolysis and its potential role in atherosclerosis.

331. Miles L A, Levin EG, Scanu AM, Plow BE.
A potential basis for the thrombotic risks associated with lipoprotein (a)

332. Berg K.

333. Rablin T, Meyer N, Labeur C, Henne Burns D, Beisigen U.
Extraction of Lipoprotein (a), apo B & apo E from fresh human arterial wall and atherosclerotic plaques.
Atherosclerosis 1995; 113: 179 – 188.

Lipoprotien (a) as an independent risk factor for coronary artery disease in patients below 40 year of Age.
IHJ, July-August-2002

335. Meade TW, Chakrabarhi R, Haines AP, North WRS, Stirling Y,
Thompson SG. Haemostatic function and cardiovascular death. Early result of prospective study.
336. Ma J, Hennekens CH, Ridker PM.
 A prospective study of fibrinogen and risk of myocardial infarction in the physicians health study.

337. Tofler G.H.
 Association of fibrinogen with cardiovascular risk factors and cardiovascular disease in the Framingham off spring population.
 Circulation 2000; 102; 164 – 1638

338. Health Care Industry
 Serum Calcium and serum lipids – adapted from atherosclerosis.

 Coronary clarification in the diagnosis of coronary artery disease.
 Am J Cardiol 1979; 44: 141 – 147.

340. Doherty TM, Detrano R. C.
 Coronary artery clarification in the diagnosis of coronary artery disease.
 Am J Cardiol 1979; 44: 141 – 147.

 Disturbed calcium metabolism in subjects with elevated diastolic blood pressure.
 Clin Investing. 70, 748 – 751.

 Serum aldosterone changes during hyperinsuline mia are correlated to body mass index and insulin sensitivity in patients with essential hypertension.

343. Holloway E.T. and Bohr D.F.
 Reactivity of vascular smooth muscle in hypertensive rats.
344. Stary H.C.
The sequence of cell and matrix changes in atherosclerotic lesions of
coronary arteries in the first forty years of life.
Eur Heart J 1990: 11 (suppl) 3–19.

A definition of advanced types of atherosclerotic lesions and a histological
classification of atherosclerosis. A report from committee on vascular
lesions of the council on Arteriosclerosis.
American Heart association.

Role of molecular regulation in vascular calcification.

Active serum vitamin D levels are inversely correlated with coronary calcification.
Circulation, 1997; 96: 1755 –1760.

348. Anita Malhotra.
C – Reactive protein as an independent predictor of risk of coronary artery
disease.
Cardiology Today, March – April 2002. VOL VI, No – 2

349. Ridker P.M, on behalf of the JUPITER study group.
Rosuvastatin in the primary prevention of cardiovascular disease among
patients with low levels of low density lipoprotein cholesterol and elevated
high – sensitivity C – Reactive protein.
Rationale and design of the JUPITER Trial.
Circulation, 2003 ; 108; 2292 – 2297.

Elevated serum uric acid.
Facet of hyperinsulinemia.
Diabetologia, 1987; 30; 713 – 718.
351. Facchini F, Chen YDI, Hollenbeek CB, Reaven GM.
Relationship between resistance of insulin medicated glucose uptake, urinary uric acid clearance and plasma uric acid concentration.

Hyperuricemia as a risk factor of coronary heart disease: the Framingham study.

353. Bengtsson C, Lapidus L, Stendahl C, Waldenstrom J.
Hyperuricaemia and risk of cardiovascular disease and overall death: a 12 year follow up of participants in the population study of women Gothenburg, Sweden.

Serum uric acid and 11.5 year mortality of middle-aged women: findings of the Chicago Hest Association Detection Project in Industry.

Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance.

Uric acid and coronary heart disease risk: evidence for a role of uric acid I the obesity – insulin resistance syndrome: the Normative Aging Study.

357. Selby JV, Friedman GD, Quesenberry CPJ. Precursors of essential hypertension: Pulmonary function, heart rate, uric acid,serum cholesterol, and other serum chemistries.

374. De Jone P.E, Curhan G.C
Screening, monitoring, and treatment of albuminuria: Public health perspectives.
J. Am Soc Nephrol 17: 2120-2126

375. Doqi K.
Clinical practice guidelines on hypertension and antihypertensive agents in chronic Kidney disease

376. Standards of medical care in diabetes-2006
Diabetes care 29, 2006, (Suppl I): S4-S42.

Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus.

378. Mogenesen C.F.
Microalbuminuria predicts clinical proteinuria and early mortality in maturity – onset diabetes mellitus.

379. Mogenesen C E, Damsguard EM, Froland A, Nielsin S.
Microalbuminuria is non – insulin – dependent diabetes mellitus.

380. Mattock MB, Morrish N J, Viberti GC, Keen H, Fitzgerald AP, Jackson G.
Prospective study of microalbuminuria as predictor of mortality in NIDDM

381. Keane WF, Eknoyan G,
 Infor Med Centers.

 Urinary albumin excretion, cardiovascular disease and endothelial
dysfunction in non - insulin dependent Diabetes Mellitus

 Increased Urinary albumin excretion, endothelial dysfuction and chronic low
grade inflammation in type 2 diabetes: Progressive interrelated and
 independently associated with risk of death.

 Structure and function in diabetic nephropathy; early to advance stages.

386. Shimomura H, Spiro R.G.
 Studies on macromolecular component of human glomerular basement
membrane and alterations in diabetes: decreased levels of heparin sulfate
proteoglycan and laminin.
 Diabetes, 1987; 36 : 374 – 381.

387. Dybdahl H, Ledet T.
 Diabetic macroangiopathy: quantitative histopathological studies of the
extramural coronary arteries from type – 2 diabetic patients.

 Heparin and glomerular epithelial cell secreted heparin like species inhibit
mesangial – cell proliferation.
Relationship of sulfated glycosaminoglycans and cholesterol content in normal and arteriosclerotic human aorta.

Feldt –Rasmusse B, Microalbuminuria : implications for micro and macro vascular disease.