NOMENCLATURE

\[[A] = [B^T] \] - Pressure gradient nodal pressure relationship matrix for the element

\[[A_i] \] - Main stiffness matrix corresponding to \(t_n \)

\[[A_2] \] - Main stiffness matrix corresponding to \(t_{n-1} \)

\[[B] = [B^T] \] - Strain displacement relationship matrix for the element

\[[C] \] - Coupling matrix between solid and fluid for the element

\[[C^n] \] - Elasticity matrix for the element

\(C_{ijkl} \) - Components of elasticity tensor

\[[E] \] - Stiffness matrix of fluid for the element

\(e_v \) - Volumetric strain of the fluid

\(F_i \) - Components of the body force vector

\(F_0 \) - External nodal load vector before deformation (initial condition)

\(\{ F_n \} \) - External nodal load vector at \(t_n \)

\(\{ F_{n-1} \} \) - External nodal load vector at \(t_{n-1} \)

\(f \) - Porosity of the material

\[[G] \] - Pore pressure shape function matrix for the element

\[[H] \] - Dissipation matrix for the pore fluid in the element
- Shape functions for the isoparametric element
- Shape function derivatives with respect to r
- Shape function derivatives with respect to z
- Jacobian matrix
- Jacobian determinant
- Permeability coefficient
- Stiffness matrix for the solid phase
- Material property defining the compressibility of pore fluid
- NHR = Harmonic number
- Set of displacement shape functions
- Set of pore pressure shape functions
- The direction cosine of the outward normal
- External nodal fluid flow
- Prescribed flow of the fluid normal to the surface s_2
- Nodal flux vector
- Nodal flows prescribed at t_n
- Nodal flow prescribed at t_{n-1}
- Intensity of uniformly distributed load
- Relative velocity of the fluid
- Flux vector (function of space and time)
- The r co-ordinate in natural or local co-ordinates system of a point within the
element

\(S_1, S_2 \) - Surfaces of the domain

\(\{T_i\} \) - Prescribed boundary tractions on \(S_1 \)

\(\{T^r_i\} \) - Nodal tractions

\(t_{n-1} \) - Time at current time cycle

\(t_n \) - Time at next time cycle

\(\{u\} \) - Nodal displacement vector

\(\{u_0\} \) - Initial nodal displacement vector

\(\{u_t\} \) - Nodal displacement vector at \(t_n \)

\(\{u_{t-1}\} \) - Nodal displacement vector at \(t_{n-1} \)

\(\{u, (t)\} \) - The set of \(i^{th} \) components of the time dependent nodal point displacement for the entire system.

\(u_i^n(x, t) \) - The \(i^{th} \) component of the space and time dependent nodal displacement vector at \((x, t) \) of the element

\(u_i \) - The components of the displacement vector for solid

\(U_i \) - The components of the displacement vector for fluid

\(w_i \) - Relative displacement of fluid with respect to solid

\(z(s, t) \) - The \(z \) co-ordinate in natural or local co-ordinate system, of a point with in the element

\(\star \) - Star operator indicating convolution integral
- Material property defining the compressibility of the solid particles

\(\alpha, \alpha_1, \alpha_2 \) - Amplitudes of incompatible modes for displacements in radial direction, corresponding to the shape functions \(h_5 \) and \(h_6 \) respectively

\(\beta_1, \beta_2 \) - Amplitudes of incompatible modes for displacements in axial (vertical) direction, corresponding to the shape functions \(h_5 \) and \(h_6 \) respectively

\(\gamma_1, \gamma_2 \) - Amplitudes of incompatible modes for displacements in circumferential direction, corresponding to the shape functions \(h_5 \) and \(h_6 \) respectively

\(\beta \) - A parameter, defining the variation of pore fluid pressure between \(t_{n-1} \) and \(t_n \)

\(\Pi \) - Pore fluid pressure

\(\{\Pi_0\} \) - Initial pore fluid pressure

\(\Pi^n(x, t) \) - The time and space dependent pore fluid pressure at \((x , t) \) in the element

\(\{\Pi(t)\} \) - The set of time dependent nodal point pore fluid pressure

\(\{\Pi_{t_n}\} \) - Pore fluid pressure at \(t_n \)

\(\{\Pi_{t_{n-1}}\} \) - Pore fluid pressure at \(t_{n-1} \)

\(\sigma^n(x, t) \) - Stress tensor for solid phase

\(\{\sigma^n_0(x,t)\} \) - Initial stresses in the element before deformation

\(\sigma_{ij} \) - Components of the symmetric stress tensor for the porous solid

\(\sigma_r, \sigma_z, \sigma_\theta \) - Radial, axial and circumferential stresses respectively

\(\{\varepsilon\} \) - Strain vector

\(\varepsilon_{ij} \) - The components of the strain tensor
\(\varepsilon_r, \varepsilon_z, \varepsilon_\theta \) - Strains in radial, axial and circumferential directions respectively

\(\varepsilon^n(x,t) \) - The space and time dependent strain tensor

\(\tau_{ij} \) - The components of bulk stress tensor

\(\delta_{ik} \) - Kronecker delta

\(\rho \) - Total mass density of fluid solid mixture

\(\rho_f \) - Mass density of fluid

\(\mu, \lambda \) - Lame's constants

\(\eta \) - Kinematic viscosity of the fluid

\(\Delta t \) - Time step = \(t_n - t_{n-1} \)

\(\Delta t_0 \) - Very small time step \(\to 0 \) for initial condition

\(\Omega \) - Gurtin's functional

\(i_r, i_z, i_\theta \) - Pressure gradients in radial, axial and circumferential directions respectively

\(\gamma_{xz}, \gamma_{x\theta}, \gamma_{z\theta} \) - Shear strains in respective planes

Meaning of other notations / symbols used is explained at the place of their first occurrence.