Contents

List of Figures vi
List of Schemes ix
List of Tables x
Abstract of Thesis xii

Chapter 1: Introduction and Literature Report

1.1 Introduction 1
1.2 Introduction to the Heck Reaction 5
1.2.1 Limitations of Heck Reaction 8
1.3 Palladium Catalyzed Heck Reactions 13
1.3.1 Heck Reaction with Aromatic Bromides and Iodides 13
1.3.2 Heck Reaction with Aromatic Chlorides 25
1.4 Other Metals in Heck Reaction 31
1.5 Arylation of Ethylene 32
1.6 Kinetics of Heck Reactions 39
1.7 Carbonylation 47
1.7.1 Carbonylation of Olefins 47
1.7.2 Mechanistic Considerations 57
1.8 Summary of the Literature Surveyed 60
1.9 Scope and Objectives 60
References 62

Chapter 2: Synthesis, Characterization of New NC Palladacycles and their Catalytic Performance in the Arylation of Ethylene

2.1 Introduction 67
2.2 Experimental Section 71
2.2.1 Methods for Preparation of Palladacycles 71
2.2.1.1 C – H Bond Activation 71
2.2.1.2 Oxidative Addition 72
2.2.1.3 Transmetallation 72

References 62
2.2.1.4 Nucleophilic Addition onto Unsaturated Bond 73
2.2.2 Instrumentation 73
2.2.3 Materials 73
2.2.4 Syntheses 74
2.2.4.1 Synthesis of \textit{m}-Bromobenzophenone 74
2.2.4.2 Synthesis of \textit{p}-isobutyl bromobenzene 74
2.2.4.3 Synthesis of Herrmann Palladacycle 75
2.2.4.4 Synthesis of NC Palladacycles 75
2.2.4.5 Synthesis of Monomeric Palladacycles 78
2.2.4.5.1 \textit{Pd}(	extit{ppy})(\textit{PPh}_3)(\textit{OTs}) Complex 80
2.2.4.5.2 \textit{Pd}(\textit{quin})(\textit{PPh}_3)(\textit{OTs}) Complex 80
2.2.4.5.3 \textit{Pd}(\textit{mquin})(\textit{PPh}_3)(\textit{OTs}) Complex 80
2.2.4.5.4 \textit{Pd}(	extit{ppy})(\textit{PPh}_3)(\textit{Cl}) Complex 81
2.2.4.5.5 \textit{Pd}(\textit{Bnpy})(\textit{PPh}_3)(\textit{Cl}) Complex 81
2.2.4.5.6 \textit{Pd}(\textit{dim})(\textit{PPh}_3)(\textit{Cl}) Complex 81
2.2.4.5.7 \textit{Pd}(\textit{bpxime})(\textit{PPh}_3)(\textit{Cl}) Complex 82
2.2.5 Procedure for the Arylation of Ethylene 83
2.2.6 Analytical and Characterization Methods 83
2.3 Characterization of the Palladacycles 84
2.3.1 Molecular Structures of NC Palladacycle Complexes 97
2.3.2 X-ray Photoelectron Spectroscopy (XPS) 110
2.4 Catalytic Reactions for the Arylation of Ethylene 111
2.4.1 Preliminary Investigations on Arylation of Ethylene with BMN 112
2.4.1.1 Effect of Temperature 113
2.4.1.2 Effect of Catalyst Loading 114
2.4.1.3 Effect of Solvent 115
2.4.1.4 Effect of Base 116
2.4.1.5 Screening of the NC Palladacycle Complexes as Catalysts in Arylation of Ethylene with BMN 117
2.4.1.6 Comparison of NC Palladacycle with Herrmann Palladacycle 120
2.4.1.7 Parametric Variation for the Arylation of Ethylene with 121
BMN at 363 K

2.4.2 Arylation of Ethylene with 4-Bromoiso-butylbenzene 123
2.4.3 Arylation of Ethylene with 3-Bromobenzophenone 124
2.4.3.1 Effect of Temperature 125
2.4.3.2 Effect of Catalyst Loading 126
2.4.3.3 Effect of Ethylene Pressure 127
2.5 Conclusions 127

Appendix I 129
References 129

Chapter 3: Kinetics of Arylation of n-Butylacrylate with 3-
bromobenzophenone using NC Palladacycle Catalyst

3.1 Introduction 150
3.2 Experimental Section 151
3.2.1 Chemicals 151
3.2.2 Preparation of the Complex Pd(ppy)(PPh₃)(OTs) 151
3.2.3 Preparation of the Substrate 3-bromobenzophenone 151
3.2.4 Reaction Methodology – Heck Coupling 152
3.2.5 Analytical Methods 152
3.3 Results and Discussions 154
3.3.1 Pd(ppy)(PPh₃)(OTs) Catalyzed Reaction of n-BA with Aromatic halides 154
3.3.2 Preliminary Experiments for the Kinetic Study of Arylation of n-butylacrylate with 3-bromobenzophenone 156
3.3.2.1 Effect of Solvent on the Arylation of n-BA with BBP 156
3.3.2.2 Effect of Different Bases 157
3.3.3 Kinetic Analysis 158
3.3.3.1 Effect of Catalyst Concentration on the Rate of Reaction 160
3.3.3.2 Effect of BBP Concentration on the Rate of the Reaction 161
3.3.3.3 Effect of n-butylacrylate Concentration on the Rate of the Reaction 163
3.3.3.4 Effect of Sodium acetate Concentration on the Rate of the Reaction 164
Chapter 4: Hydroesterification of 2-vinyl-6-methoxynaphthalene using Palladium Complexes Containing Chelating Nitrogen Ligands

4.1 Introduction 184
4.2 Experimental 186
4.2.1 Materials 186
4.2.2 Preparation of Pd(pyca)(PPh$_3$)(OTs).H$_2$O 187
4.2.3 Preparation of Pd(acpy)(PPh$_3$)(OTs)$_2$.2H$_2$O 187
4.2.4 Preparation of Pd(pycald)(PPh$_3$)(OTs)$_2$.2H$_2$O 188
4.2.5 Preparation of Pd(bipy)(PPh$_3$)(OTs)$_2$.3H$_2$O 188
4.3 Experimental Procedure for Hydroesterification 189
4.4 Analytical Methods 189
4.5 Results and Discussions 191
4.5.1 Hydroesterification of Important Substrates 191
4.5.2 Screening of Various Palladium Complexes 199
4.6 Parametric Effects 200
4.6.1 Effect of Acid and Halide Promoter 200
4.6.2 Screening of Acid Promoters 203
4.6.3 Effect of Different Halide Promoters 204
4.6.4 Effect of Benzenesulfonic acid:LiCl ratio 204
4.6.5 Effect of Different Alcohols 205
4.6.6 Effect of Different Solvents 207
4.6.7 Effect of Reaction Temperature 208
4.6.8 Effect of Amount of Methanol 208
4.6.9 Effect of Catalyst Loading and Carbon monoxide Pressure 209
4.7 Conclusions 213
Appendix III 214
References 219