9. BIBLIOGRAPHY
9. BIBLIOGRAPHY.

1. Perfect JR. and Schell WA.
The new fungal opportunists are coming.

Importance of Candida species other than Candida albicans as opportunistic pathogens.

3. Odds FC.
Introduction and Historical note in Candida and Candidosis.

4. Rippon J.W.
Opportunistic Infections: Yeasts: Candidiasis and the pathogenic yeasts:
The pathogenic fungi and the pathogenic Actinomycetes.

5. BLeislie Collier, Albert Balows, Max Sussman.
Unicellular Ascomyctous and Basidiomycetous pathogenic fungi.
Topley Wilson's Microbiology and Microbial infections.

Changing taxonomic concepts and their impact on nomenclature stability.

7. Odds FC.
Biological aspects of pathogenic Candida species. Candida and Candidosis.

Molecular mycology. DNA probes and application of PCR technology.

and et al. Molecular, biological and biochemical aspects of fungal dimorphism.

Quoted by FC odds.1994. Presidential address.

Contact - sensing in Candida albicans. A possible aid to epithelial penetration.
12. Odds FC.
Morphogenesis in Candida with special reference to Candida albicans.
Candida and Candidosis.

13. Soil DR, Bedell GW, and Brummell.
Zinc and the regulation of growth and phenotype in the infectious yeast Candida albicans.

14. Bernander S and Edeba L.
Growth and phase conversion of Candida albicans in Dubose medium.

15. Cutler J.E.
Putative virulence factors of Candida albicans.

Molecular mechanisms of virulence in fungus - host interactions for Aspergillus fumigatus and Candida albicans.

17. Stevens DA, Walsh TJ, Bistoni F and et al.
Cytokines and Mycoses.

18. Casadevall A., Cassone A, Bistoni F, Cutler J.E.
Antibody and/or cell mediated immunity, protective mechanisms in fungal disease. An ongoing dilemma or an unnecessary dispute?

19. Murphy J.W., Bistoni F, Deepe G.S., Blackstock R.A.
Type 1 and Type 2 cytokines, from basic science to fungal infections.

20. Domer J.E. Murphy J.W. Deepe G.S. Franco M.
Immunomodulation in mycoses.

Mechanism of host defense against fungal infection.

22. Odds F.C.
Factors that predispose the host to Candidosis. Candida and Candidosis.

23. Moore GS, and Jaciow DM.
Yeast identification :Mycology for clinical laboratory.
24. Heimenz JW. and Walsh T.J.
Lipid formulations of Amphotericin B: Recent progress and future directions.

25. Odds F.C.

26. Odds FC.
Chapter 9-23. Candida and Candidosis

27. Bodey GP.
Candidiasis in Cancer patients. A growing concern.
Am. J. Med. 1984, 30, 77 (4D), 1-44.

28. Pfaller MA.
Nosocomial Candidiasis. Emerging species, reservoirs, and modes of transmission.

29. Roberts GD, Pfaller MA, Gueho E, Roger TR. Devory C and Merz WG.
Developments in the diagnostic mycology laboratory:

31. Reiss Errol and Morrison C J.
Non culture methods for diagnosis of disseminated Candidiasis.

32. Mathews R C.
Comparative assessment of the detection of Candidal antigens as a diagnostic tool.

Identification of Candida species by PCR and restriction fragment length polymorphism analysis of intergenic spacer regions of ribosomal DNA.

34. Merz W G.
Candida albicans strain delineation.

Typing of Candida albicans strains.
36. Odds F C.
 Presidential address. *Candida albicans* the life times of pathogenic yeast.

37. Odds F C.
 Biotyping of *Candida albicans*: Results of International Collaborative Survey.

38. Campbell M C, Stewart J L.
 Taxonomy. The medical mycology Hand book
 1st edition. A wiley medical publication, John Willey & Sons,

 Candida albicans.Biology, Genetics and Pathogenicity.

40. Odds F C.

41. Lott T J, Magee P T, Barton R, Chu W and et al.
 The molecular genetics of *Candida albicans*.

42. Aheran D G.
 Medically important yeasts.

43. Odds F C.
 Structure physiology and Biochemistry of Candida Species.

44. Lemos Carolino M, Madeira Lopesa.
 The effect of 5-Fluorocytosine on the temperature profile of *Candida albicans*.

45. Reiss E, Hearn V M, Poulain D and Sphephered M G.
 Structure and Function of the fungal cell wall.

46. Spencer D M, Spencer J F T, Fengler E, Figueroa Li-de, de Figueroa Li.
 Yeasts associated with Algarrobo trees (*Prosopis Species*) in Northwest
 Argentina, A preliminary report.

47. Morais P B, Rosa C A, Hagler A N, Mendonca, Hagler L C.
 Yeast communities of the cactus *Pilosoiereus arrabi* Drosophila Serido.

-282- Bibliography
Fungal infections in AIDS patients.

49. Krause W, Matheis H, Walf K.
Fungemia and Fungiuria after oral administration of Candida albicans.

The role of the gastrointestinal tract in hematogenous candidiasis:
from the laboratory to the bedside.

51. Kearns M J, Davies P and Smith H.
Variability of the adherence of Candida albicans strains to human buccal
epithelial cells: Inconsistency of differences between strains related to virulence.
Sabouraudia. 1983, 21, 93-98.

52. Hazen K C, Brawner D L, Reisselman H M, Jutila M A, Cutler J E.
Differential adherence between hydrophobic and hydrophilic yeast cells
of Candida albicans.

53. Hazen K C.
Participation of yeast cell surface hydrophobicity in adherence of
Candida albicans to human epithelial cells.
Infect. Imm. 1989, 57, 1894-1900.

54. Diamond R D, Krzesicki R, Welington J.
Damage to pseudohyphal forms of Candida albicans by neutrophils in
absence of serum in vitro.

56. Hazen B W, Hazen K C.
Dynamic expression of cell surface hydrophobicity during initial yeast growth
and before germ tube formation of Candida albicans.
Infect. Imm. 1988, 56, 2521-2525.

57. Ogawa H, Nozawa Y, Rajanavanich V and et al.
Fungal enzymes in the pathogenesis of fungal infections.

58. Macdonald F.
Secretion of inducible proteinase by pathogenic Candida Species.
Sabouraudia 1984, 22, 79-82.

Bibliography
59. Ray T L, Payne C D.
Comparative production and rapid purification of Candida acid proteinase from protein supplemented cultures.
Infect. Imm. 1990, 58, 508-514.

60. Ruchel R, Tagelar R, Tros M.
A comparison of secretory proteinases from different strains of *Candida albicans.*
Sabouraudia 1982, 20, 233-244.

61. Ruchel R, Bowing B and Borg M.
Characterization of secretory proteinase of *Candida parapsilosis* and evidence for the absence of the enzyme during infection in vitro.

62. Borg M and Ruchel R.
Demonstration of protease during phagocytosis of *Candida albicans* and *Candida tropicalis.*

The proteolytic potential of *Candida albicans* in human saliva supplemented with glucose.

64. Banno Y, Yamada T, Nozawa Y.
Secreted phospholipases of the dimorphic fungus *Candida albicans.*
Separation of 3 enzymes and some biological properties.

65. Samamayake L P, Raeside J M, MacFarlane T W.
Factors affecting the phospholipase activity of Candida species in vitro.

66. Calderone R A and Braun P C.
Adherence and receptor relationship of *Candida albicans.*

Molecular basis of *Candida albicans* adhesion.

68. McCartie J, Douglas L J.
Relationship between cell surface composition, adherence and virulence of *Candida albicans.*
Infect. Imm. 1984, 45, 6-12.

69. Odds F C.

Bibliography
The relationship between colonisation, secretor status and invitro adhesion.

71. Deitsch K W, Moxon R E and Wellens T E.
Shared themes of antigen variation and virulence in bacterial and fungal infection.

Increased phenotypic switching in strains of Candida albicans associated with invasive infections .

73. Domer J E, Murphy J W, Deepe G S, Franco M.
Immunomodulation in the mycoses.

Molecular biological and biochemical aspects of fungal dimorphism .

75. Deshpande M V.
The effect of morphological changes in fungal pathogenesis.

76. Stabell M, Soll D R.
Temporal and Spatial differences in cell wall expansion during bud and mycelium formation in Candida albicans.

77. Gow N A R and Gooday G W.
A model for the germ tube formation and mycelial growth form of Candida albicans.

78. Stevens D A, Domer J E, Ashman R B, Blackstock R, and Brummer E.
Immunomodulation in mycoses.

79. Greenfield R A.
Defense system interaction with Candida

80. Murphy J W.
Mechanism of natural resistance to human pathogenic fungi.

81. Ashman R B and Papadimitriou J M.
Production and function of cytokines in natural and acquired immunity to Candida albicans infection.

Bibliography
94. Anil S. Nair R G, Beena V T.
Oral candidiasis: A potential expression of HIV infection.
CARC Calling 1994,7(2)19-21.

95. Robert Klein, Harris Carol, Catherine BS, Bernice H, Martin Lesser and et.al.
Oral Candidosis in high risk patients as the initial manifestation of AIDS.

96. Bodey C P.
Candidiasis in cancer patients.

97. Samamayake LP, Huges A, MacFarlane TW.
The proteolytic potential of Candida albicans in human saline supplemented with glucose.

98. Gerald Nash, Goodwin M N, Green wald A K.
Fungal burn wound infections.

99. Spebar M J, Pruitt B A.
Candidiasis in the burn patients.

100. Spebar M J, Lindbergh R B.
Fungal infection of burn wounds.

101. Nash GM, Daniel F, Pruitt BA.
Arch. Pathol. 1970, 90, 75-78.

102. Neely AN, Odds FC, Basatia BK.
Characterization of Candida isolates from pediatric burn patients.

Monilial sepsis in the surgical patients .

104. Stadler J, Karp MP, Stein JM, Stein E, Levenson SM.
Suppurative thrombophlebitis caused solely by Candida albicans.

Experimental candidiasis after thermal injury.
Infect. Imm. 1985, 49, 760-764.
Studies on occurrence of significance of yeasts and fungi in burn wound.

Effect of various antibiotics on gastrointestinal colonisation and dissemination by Candida albicans.

108. Micheal Kennedy and Volz PA.
Ecology of Candida albicans gut colonisation. Inhibition of candida adhesion colonisation and disseminate from the GIT by bacterial antagonism.
Infect. Imm. 1985, 49, 654-657.

Ecology of Candida albicans gut colonisation. Inhibition of candida adhesion, colonisation and dissemination from the gastrointestinal tract by bacterial antagonism.
Infect. Imm. 1985, 49, 654-663.

110. Field EA, Field JK, and Matin MV.
Does Candida have a role in oral epithelial neoplasia?

111. McCourtie J and Douglas LJ.
Relationship between cell surface composition of Candida albicans and adhesion to acrylic after growth on different carbon sources.
Inf. Imm. 1981, 32, 1234-1241.

112. McCourtie J, MacFarlane T W, Samarmayke L P.
Effect of saliva and serum on the adhesion of Candida species to chlorhexidine treated dentures acrylic.

113. Rhoads J L, Wright D C, Redfield R R and et al.
Chronic vulvovaginal Candidiasis in women with HIV infection.

114. Odds F C,
Candidosis of the genitalia. Candida and Candidosis. 2nd edition,

Pulmonary candidiasis.
Ind. J. Tuber. 1977, 24, 171-175.

Pulmonary Diseases caused by Candida species.
117. Jain S K, Agarwal R D, Sharma D A.
Fungal superinfection in pulmonary tuberculosis.

118. Khanna B K, Nath P, Ansari A H.
A study of mycotic flora of respiratory tract in Pulmonary tuberculosis.
Ind. J. Tuber. 1977, 24, 159-162.

119. Phadke SN, Katare SN, Gupta JC, Vyas GP.
Study of fungi associated with chronic bronchopulmonary diseases.

120. Jain S K, Agarwal R D, Sharma D A.
Candida in pulmonary tuberculosis.

121. Odds F C.

Oral candidiasis as a marker of esophageal candidiasis in the AIDS.

123. Odds F C.

124. Odds F C.

Chronic mucocutaneous Candidiasis.

126. Curry C R, Quie P G.
Fungal septicemia in patients receiving parental hyperalimentation.

Outbreak of Systemic Candida albicans in I.C.U. caused by cross infection.

128. Calderone R A, Rotondo M F, Sande M A.
Candida albicans endocarditis. Ultrastrual studies of vegetation formation.
Infect. Imm. 1978, 20, 279-289.
129. Odds F C.
Candida endocarditis, Myocarditis, and other cardiovascular Candida infections.
In Candida and Candidosis 2nd edition.

130. Odds F C.

Susceptibility of brain to aerobic, anaerobic and fungal organisms:
Infect. Imm. 1983, 41, 535-539.

132. Odds F C.
Disseminated Candidosis (Candida septicemia): Myocarditis, and other cardiovascular Candida infections:

133. Odds F C.
Candida infections and Bones and Joints. Candida and Candidosis.

134. Odds F C.

135. Baron J E, Peterson L R, Finegold S M.
Laboratory methods in basic mycology.

136. Odds F C.
Isolation and identification and other laboratory aspects of Candida.

137. Harin AL R, Hugo D Hempel, Cecilia L Kimberlin, Goodman N L.
Effect of time lapse between sputum collection and culturing on isolation of clinically significant fungi.

Improved blood culture technique based on centrifugation: Clinical evaluation.

Comparative recovery of bacteria and yeasts from lysis – centrifugation and a conventional blood culture system.
Candida parapsilosis fungemia associated with parental nutrition and
contaminated blood pressure transducers.

141. Raq N A .
A laboratory approach to rapid diagnosis of ocular infections and prospects for the future.

142. Graham A R.
Fungal autoflorescence with UV illumination.

143. Aldoory Y.
The yeasts: Laboratory Medical Mycology.

144. Sinski J T, Kelley K M , Reed G I.

145. Yamane N, Saitoh Y.
Isolation of multiple yeasts from a single clinical sample by use of
Pagano-Levin agar medium.

146. Holmes A R and Shepherd M G.
National factors determining germ tube formation in Candida albicans.

147. Pollock J H.
Role of glucose in the pH regulation and germ tube formation in Candida albicans.

148. Hazen K C and Cutler J E.
Auto regulation of germ tube formation by Candida albicans.
Inf. Imm. 1979, 24, 861- 866.

149. Berardineli S and Opheim D J.
New germ tube induction medium for the identification of Candida albicans.

150. Mackenzie Q W R.
Germ tube identification of Candida albicans.

151. Mattia E, Carruba G, Angiolella L and Cassone A.
Induction of germ tube formation by N-acetyl D-glucosamine in
Candida albicans, Uptake of inducer and germinate response.

-291- Bibliography
152. Dolan CT, Ihrka DM.
Further studies of germ tube test for *Candida albicans* identification.

Formation of germ tube by *Candida tropicalis*.

154. Matin M V, White HF.
A microbiologic and ultrastructural study investigation of germ tube formation by oral strains of *Candida tropicalis*

155. Tierno PM and Milstoc M.
Germ tube positive *Candida tropicalis*

156. Torosantucki.
Induction and morphogenesis of chlamydospires in an ageinative variant of *Candida albicans*.
Sabouraudia 1983, 21, 49-52. 156

157. Mickelsen PA, McCarthy LR, Propst MA.
Further modification of auxanographic method for identification of yeasts.

158. Baker JG, Salkin IF, Pincus DH, Damato RE.
Diagnostic characterization of an atypical Candida.

159. Syverson RE.
Variable assimilation of carbon compounds by *Candida albicans*.

160. Kamiyama A, Nimi M, Tokunaga M and Nakayama H.
Adansonian study of *Candida albicans*: Intraspecific homogeneity excepting *Candida stellatoidae* strains.

161. Molina TC, Mishra SK and Pierson DC.
A fermentation test for rapid identification of Candida.

162. Dolan CT.
A practical approach to identification of yeast like organism.

163. Joshi KR, Bermer DA, Parr DN, Gavin JB.
The morphological identification of pathogenic yeasts using carbohydrate media.

-292-
164. Joshi K R.
Morphological identification pathogenic yeasts.

165. Joshi KR, Solanki Aruna, Prakash P.
Morphological identification of Candida species on glucose agar,
rice extract agar, corn meal agar with and without Tween -80.

166. Joshi KR
Identification of yeast like fungi. Opportunistic mycosis.
Practical manual for diagnosis and identification.scientific Publication 1995,27-44.

167. Hasenclever H F, Mitchell W O.
Antigenic studies of Candida III. Comparative pathogenicity of
Candida albicans group A, group B, and Candida stellatoidea.

168. Tsuchiya T, Fukazawa Y, Taguchi M, Kase T, Shinoda T.
Serologic aspect on yeast classification.

169. Hasenclever HF, Mitchell WO.
Antigenic studies of Candida. I: Observation of two antigenic group in Candida albicans.

170. Polonelli L and Morace G.
Specific and common antigenic determinants of Candida albicans isolates
detected by Monoclonal antibodies.

171. Strockbine NA, Largen MT and Buckley HR.
Production a characterizations of three monoclonal antibodies to
Candida albicans proteins.
Infect. Imm. 1984, 43, 1012 - 1018.

172. Guinet R M F and Gabriel S M.
Candida albicans group A specific soluble antigen determined by quantitative
Immuno-electrophoresis.
Inf. Imm. 1980, 29, 853-858.

173. Auger P, Duman C, Joly J.
Interaction of serotypes A and B of Candida albicans in mice.

174. Martin MV, Lamb DJ.
Frequency of Candida albicans serotype in patients with denture induced
stomatitis in normal denture wearers.
175. Poulain D, Tronchin G, Vernes A, Popeye R, Biguet J.
Antigenic variations of Candida albicans in vivo and in vitro-relation between
P antigens and serotypes.

176. Auger P, Duman C, Joly J.
A study of 666 strain of Candida albicans: Correlation between
serotype and susceptibility to 5 FC.
Inf. Imm. 1979, 139, 590-594.

177. Brawner DL, and Cutler JE.
Oral Candida albicans isolates from non-hospitalised normal
carriers, immunocompetent hospitalised patients, and immunocompromised
patients with and without acquired immunodeficiency syndrome.

178. Hunter P R, Fraser C A M and Mackenzie DWR.
Morphotype markers of virulence in human Candidal infections.

179. Hunter P R, Fraser CAM.
Application of a numerical index of discriminatory power to a
comparison of four physiochemical typing methods for Candida albicans.

180. Hunter PR, Harrison GAJ, and Fraser CAM.
Cross infection and diversity of Candida albicans strain carriage in
patient and nursing staff on an intensive care unit.

Quantitation and morphotyping of Candida albicans from healthy
mouths and from mouths affected by erythematous candidosis.

182. Oliver AJ, Reade PC.
Morphotypes of oral isolates of Candida albicans isolated from
patients infected with Human immunodeficiency virus.

183. Warnock DW, Speller DCE, Milne JD, Hilton AL and et. al.
Epidemiological investigation of patients with vulvovaginal candidosis.

184. McCreight MC, Warnock DW.
Enhanced differentiation of isolates of Candida albicans using
a modified resistogram method.
185. McCreight MC, Warmock DW, Watkinson AC.
Prevalence of different strains of *Candida albicans* in patients with
denture induced stomatitis.

186. Ghannoum M and Abu Elteen K.
Correlative relationship between proteinase production adherence and
pathogenicity of various strains of *Candida albicans*.

187. Meinhof W.
Demonstration of typical features of individual *Candida albicans*
strains as a means of study source of infection.
Chemotherapy (Basel) 28 (Suppl. 1) 51-55.

188. Hunter PR and Fraser C.
Use of modified resistogram to type *Candida albicans* isolated from
cases of vaginitis and from faeces in same geographical area.

189. Odds FC and Abbott A B.
A simple system for the presumptive identification of
Candida albicans and differentiation of strains within the speices.
Sabouraudia. 1980, 18, 301-317.

190. Odds FC, Abbott A B, Striller R L et al.
Analysis of *Candida albicans* phenotypes from different geographical
and anatomical sources.

191. Odds FC, Abbott A B.
Modification and extension of tests for differentiation of Candida species and strains.
Sabouraudia 1983, 21, 79-81

Out break of systemic *Candida albicans* in intensive care unit caused by cross infection.

Yeast species and biotypes associated with oral leukoplakia and lichenplanus.

194. Roman MC and Sicilia MJL.
Preliminary investigation of *Candida albicans* biovars.

195. Williamson MI, Samarnayak LP and McFarlane TW.
Biotypes of Oral *Candida albicans* and *Candida tropicalis* isolates.
196. Manning M and Mitchell TG.
Analysis of cytoplasmic antigen of yeast and mycelial phases of Candida albicans by two-dimensional electrophoresis.
Inf. Imm. 1980, 30, 484-495.

197. Lehman PF, Kemker BJ, Hasiao C and Dev S.
Isoenzyme biotypes of Candida species.

198. Polonelli L, Archibussaci C, Sestio M and Morace G.

199. Middlebeek EJ, Hermans MHJ, Stumm C and Muytjens HL.
High incidence of sensitivity to yeast killer toxins among Candida and Torulopsis isolates of human origin.

200. Joshi K R.
Antimycotic Sensitivity testing. Opportunistic mycosis.

201. Rex SH, Pfaller MA, Renaldi MG, Polak AM and Galgiani JN.
Antifungal susceptibility testing.

Standardization of antifungal susceptibility testing and clinical relevance.

203. Vanderbossche H, Dormer E, Improvisi I and et al.
Antifungal drug resistance in pathogenic fungi.

204. Groll AH, Walsh TJ.
Potential new antifungal agent.

Antifungal drug susceptibility testing.

In vitro antifungal susceptibility of Candida.

207. Drutz DJ and Lehrer RI.
Development of Amphotericin B resistant Candida tropicalis in patients with defective leukocyte function.
208. Odds FC.
Antifungal agents and their use in Candida infections.

209. Horseburgh CR, Kirkpatrick CH, Teutsch CB.
Ketoconazole and the liver.

210. Warmock DW, Johnson CM, Richardson MD and et. al.
Modified response to Ketoconazole of Candida albicans from a treatment failure.

211. Lynch ME and Sobel JD.
Comparative in vitro ability of antimycotic agent against pathogenic vaginal yeast isolates.

212. Bossche HV, Warmock DW, Dupont B and et al.
Mechanism and clinical impact of antifungal drug resistance.

213. Mathews RC.
Comparative assessment of the detection of candida antigens as a diagnostic tool.

Immunodiagnosis of invasive fungal infections.

215. Vermeij PE, Poulain D, Obayashi T, Patterson TF, Denning D W, Ponton J.
Current trends in the detection of antigenemia metabolites and cell wall markers for the diagnosis and therapeutic monitoring of fungal infection.
Medical Mycol. 1998, 36, (suppl 1) 146-155

Early diagnosis of immunocompromised and rapid evaluation of antifungal therapy by combined use of conventional choromogenic limulus test and a newly developed endotoxin specific assay.
J. Trauma. 1988, 28, 1118-1126.

217. Strockbine NA, Largen MT, Zweibl SM and Buckley HR.
Identification and molecular weight characterization of antigens from Candida albicans that are recognized by human sera.
Inf. Imm. 1984, 43, 715 - 721.

Molecular mycology: DNA probes and application of PCR technology.
Isolation and characterization of a species-specific DNA fragment for
detection of Candida albicans by PCR.

220. Pre congress CME.
Symposium and workshop on clinical mycology.

221. Shivananda P G, Sarvamangala J N, Achytha Rao K H
Precipitation tests in candidiasis.

Complement fixation test in systemic candidiasis.

Counter immunoelectrophoresis in urinary candidiasis.

224. Joshi K R.
Serological identification of yeast-like fungi opportunistic mycosis.
Practical manual for diagnosis and infections.

New strategies in vaccination against fungal infections.

Selected animal models: Vaginal Candidosis.
Pneumocystis pneumonia, dermatophytosis and trichosporonosis.

227. Banerjee U, Kumar R, Mohapatra L N.
Assessment of pathogenicity of Candida albicans determination of 50% infective dose (ID 50) for mice.

Persistence and spread of Candida albicans after intragastric inoculation of infant mice.

229. Luenk R D, Moon R J.
Physiological and metabolic alteration accompanying systemic candidiasis in mice.
Infect. Imm. 1979, 26, 1035-1041.

230. Louria D B, Brayton R G, Finkel G.
Studies on pathogenesis of experimental Candida albicans in mice
231. Manohar V, Sirsi M, Ramananda R G.
Yeasts in superficial mycoses: pathogenicity of Candida species to swiss albino mice.

232. Roger I J, Balish E.
Experimental Candida albicans infection in conventional mice and germ free rats.

Histopathology of experimental systemic Candidosis in guinea pigs.

234. Kwonchung K J, Tom W K.
Unilateral involvement of kidneys in mice infected with Candida albicans.

Fungemia observation of peripheral tissue clearance in human.

236. Banerjee U, Mohapatra L N, Kumar R.
Role of antibody in defense against murine candidiasis.

237. Ryley J F, Ryley N G.

238. Helstrom P B, Balish E.
Effect of oral tetracycline on the microbial flora and the athymic state on gastrointestinal colonisation and infection of BALB/C mice with Candida albicans.

239. Kennedy M J, Volz P A.
Dissemination of yeasts after gastrointestinal inoculation in antibiotic treated mice.

240. Kennedy M J, Volz P A.
Effect of various antibiotics on gastrointestinal colonisation and dissemination by Candida albicans.

Ecology of Candida albicans gut colonisation. Inhibition of Candida adhesion colonisation and dissemination from the gastrointestinal tract by bacterial antagonism.

-299- Bibliography

253. Joshi KR, Purohit B, Ramdeo IN, Bhardwaj TP.
The formation of Germ tubes by *Candida albicans* in glucose and aminoacids.

The relationship between the glucose uptake system and growth cessation in *Candida albicans*.

255. Holmes AR and Shepheard MG.
Nutritional factors determining germ tube formation in *Candida albicans*.

256. Koneman EW, Allen SD, Dowell VR, Sommers HM.
Color Atlas and Textbook of Diagnostic Microbial.

257. Sobczak H.
A simple disk diffusion test for differentiation yeast species.

258. Chande CA, Katkar VJ, Phatak AA, Soaji AM.
Serotyping of pulmonary isolates of *Candida albicans* a preliminary study.

259. Chakrabarti A, Singh K, Jatana M

260. Darling F, Herbert WJr, Fraser AG, Marmion BP, Simmons A, Mackie and McCartney

261. Lakshami V, Sudharani T, Rao RR.
Clinico mycological study of candidiasis.

262. Martin MV, AL-Tikriti U, Bramley PA.
Yeast flora of the mouth and skin during and after irradiation for oral and laryngeal cancer.

263. Chen TY, Webster J H.
Oral Monilia: Study on patients with head and neck cancer during chemotherapy.
Cancer. 1974, 34, 246-249.

Monilial sepsis in the surgical patient. Symposium on surgical infections.
265. Klein R, Harris C, Catherine BS, Bernice H and et. al.
Oral candidiasis in high risk patients as the initial manifestation of AIDS.

266. Shivananda PG, Bhaskara Rao, Hamlyn JF, Mohan Kotian and et. al.
Candida in leukoplakia associated with pulmonary tuberculosis.
A preliminary report.

Opportunistic fungal infections in cancer patients. A ten year autopsy study.

268. Kate S K.
Pulmonary tuberculosis. An AIDS indicator disease.
CARC calling. 1993, 6, 5-6.

269. Rose H D, Sheth N K.
Pulmonary candidiasis.

270. Banavlikar JN.
Association of fungal infections in pulmonary tuberculosis. Clinical experience.

271. Malik AK, Sabharwal U, Chugh TD.
Fungal flora in cases of clinically suspected pulmonary tuberculosis.

272. Chakravarty SC.
Incidence and significance of fungi in sputum in broncho pulmonary diseases.

Incidence and significance of candiduria.

274. Knight L, Fletcher J.
Growth of candida albicans in saliva : Stimulation by glucose
associated with antibiotics, corticosteroids and diabetes mellitus.

The prevalence of yeasts in clinical specimens in cancer patients.

276. Wingard JR, Merz WG, Saral R.
Candida tropicalis : A major pathogen in immunocompromised patients.
277. Samaranayake L P and MacFarlane T W.
The effect of dietary carbohydrates on the in vitro adhesion of Candida albicans to epithelial cells.

278. Samarnayake Y F, Wu P C, Samaranayke L P, SOM and Yuen K Y.
Adhesion and colonisation of Candida krusei on host surfaces.

279. Chakrabarti A, Reddi TCS, Singhi S.
Does candiduria predict candidemia?

280. Baradkar et. al.
Isolation and characterization of Candida in AIDS.

281. Muerkoestar CG, Richard AK, Farmer SG.
A comparison of hyphal growth of Candida albicans in 6 liquid media.
Sabouraudia 1979, 17, 55-64.

282. Land GA, McDonald WC, Stejernholm RL and et. al.
Infect. Imm. 1975, 12, 119-127.

283. Martin MV, Frank HW.
A Microbiologic and Ultrastructural Investigation of Germ tube formation by oral strains of Candida tropicalis.

284. Pandalai, NG and Kurup PV.
The occurrence of Candida species in the sputum of patients with broncopulmonary diseases.

285. Grower S, and Junnarkar RV.
Mycological flora in sputum of patients suffering from bronchopulmonary diseases.

286. Mackowiak. Philip A.
Microbial synergism in human infections.

286. Allen SD and Duerden BL.
Infections due to non-sporing anaerobic bacilli and cocci.
287. Brooks RG, Hofflin JM, Jamieson SW and et. al.
Infectious complications in heart-lung transplant recipients.

288. Dyess DL, Garrison RN, Fry DE.
Candida sepsis.

289. Burchard KW, Minor LB. Slotman GJ et.al.
Fungal sepsis in surgical patients.

290. Carlson E.
Synergistic effect of Candida albicans and Staphylococcus aureus, on mouse mortality.

291. Klein JJ, Watakunakorn C.
Hospital acquired fungemia.

292. Hunter PR and Fraser C.
Use of modified resistogram to type Candida albicans isolated from cases of vaginitis and from faeces in same geographical area.

293. Martin MV, and Wilkinson GR.
The oral yeast flora of 10-year old school children.

294. Phongpaichit S, Mackenzie DWR and Fraser C.
Strain differentiation of Candida albicans by morphotyping.

295. Kakru DK, Thoker MA, Sofi BA, Mir MM and Shah A.
Correlation of Morphotyping and extra-cellular proteinase production as virulence marker in Candida albicans.

296. McCreight MC, Warnock DW and Martin MV.
Resistogram typing of Candida albicans isolates from oral and cutaneous sites in irradiated patients.

297. Dick JD, Merz WG, Saral R.
Incidence of polyene-resistant yeasts recovered from clinical specimens.