LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Main health effects on humans from pollution</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Location of Karaikal</td>
<td>13</td>
</tr>
<tr>
<td>1.3</td>
<td>Location of sampling area at Tirumalarajanpattinam, Karaikal</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>Location of sample collection sites</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution of parameters in soils of four canals (S₁-S₃₀)</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Typical X-ray fluorescence spectrometer</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Relative distribution of trace elements in soil samples</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>Optical layout of NICOLET AVATAR 360 Model FT-IR spectrometer</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>Overlap of FT-IR spectra of soil samples in First canal (S₁-S₃)</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Overlap of FT-IR spectra of soil samples in First canal (S₄-S₆)</td>
<td>83</td>
</tr>
<tr>
<td>4.4</td>
<td>Overlap of FT-IR spectra of soil samples in First canal (S₇-S₉)</td>
<td>84</td>
</tr>
<tr>
<td>4.5</td>
<td>Overlap of FT-IR spectra of soil samples in Second canal (S₁₀-S₁₂)</td>
<td>84</td>
</tr>
<tr>
<td>4.6</td>
<td>Overlap of FT-IR spectra of soil samples in Second canal (S₁₃-S₁₅)</td>
<td>85</td>
</tr>
<tr>
<td>4.7</td>
<td>Overlap of FT-IR spectra of soil samples in Second canal (S₁₆-S₁₈)</td>
<td>85</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.8</td>
<td>Overlap of FT-IR spectra of soil samples in Third canal (S<sub>19</sub>-S<sub>21</sub>)</td>
<td>86</td>
</tr>
<tr>
<td>4.9</td>
<td>Overlap of FT-IR spectra of soil samples in Third canal (S<sub>22</sub>-S<sub>24</sub>)</td>
<td>86</td>
</tr>
<tr>
<td>4.10</td>
<td>Overlap of FT-IR spectra of soil samples in Third canal (S<sub>25</sub>-S<sub>27</sub>)</td>
<td>87</td>
</tr>
<tr>
<td>4.11</td>
<td>Overlap of FT-IR spectra of soil samples in Fourth canal (S<sub>28</sub>-S<sub>30</sub>)</td>
<td>87</td>
</tr>
<tr>
<td>4.12</td>
<td>Overlap of FT-IR spectra of soil samples in Fourth canal (S<sub>31</sub>-S<sub>33</sub>)</td>
<td>88</td>
</tr>
<tr>
<td>4.13</td>
<td>Overlap of FT-IR spectra of soil samples in Fourth canal (S<sub>34</sub>-S<sub>36</sub>)</td>
<td>88</td>
</tr>
<tr>
<td>4.14</td>
<td>Binary mixture of illite/kaolinite in soil of First canal</td>
<td>96</td>
</tr>
<tr>
<td>4.15</td>
<td>Binary mixture of illite/quartz in soil of First canal</td>
<td>97</td>
</tr>
<tr>
<td>4.16</td>
<td>Binary mixture of illite/hematite in soil of First canal</td>
<td>98</td>
</tr>
<tr>
<td>4.17</td>
<td>Binary mixture of kaolinite/quartz in soil of First canal</td>
<td>100</td>
</tr>
<tr>
<td>4.18</td>
<td>Binary mixture of kaolinite/hematite in soil of First canal</td>
<td>101</td>
</tr>
<tr>
<td>4.19</td>
<td>Binary mixture of quartz/hematite in soil of First canal</td>
<td>103</td>
</tr>
<tr>
<td>4.20</td>
<td>Binary mixture of illite/kaolinite in soil of Second canal</td>
<td>104</td>
</tr>
<tr>
<td>4.21</td>
<td>Binary mixture of illite/quartz in soil of Second canal</td>
<td>105</td>
</tr>
<tr>
<td>4.22</td>
<td>Binary mixture of illite/hematite in soil of Second canal</td>
<td>107</td>
</tr>
<tr>
<td>4.23</td>
<td>Binary mixture of kaolinite/quartz in soil of Second canal</td>
<td>108</td>
</tr>
<tr>
<td>4.24</td>
<td>Binary mixture of kaolinite/hematite in soil of Second canal</td>
<td>110</td>
</tr>
<tr>
<td>4.25</td>
<td>Binary mixture of quartz/hematite in soil of Second canal</td>
<td>111</td>
</tr>
<tr>
<td>4.26</td>
<td>Binary mixture of illite/kaolinite in soil of Third canal</td>
<td>112</td>
</tr>
<tr>
<td>4.27</td>
<td>Binary mixture of illite/quartz in soil of Third canal</td>
<td>114</td>
</tr>
<tr>
<td>4.28</td>
<td>Binary mixture of illite/hematite in soil of Third canal</td>
<td>115</td>
</tr>
<tr>
<td>4.29</td>
<td>Binary mixture of kaolinite/quartz in soil of Third canal</td>
<td>117</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.30</td>
<td>Binary mixture of kaolinite/hematite in soil of Third canal</td>
<td>118</td>
</tr>
<tr>
<td>4.31</td>
<td>Binary mixture of quartz/hematite in soil of Third canal</td>
<td>119</td>
</tr>
<tr>
<td>4.32</td>
<td>Binary mixture of illite/kaolinite in soil of Fourth canal</td>
<td>121</td>
</tr>
<tr>
<td>4.33</td>
<td>Binary mixture of illite/quartz in soil of Fourth canal</td>
<td>122</td>
</tr>
<tr>
<td>4.34</td>
<td>Binary mixture of illite/hematite in soil of Fourth canal</td>
<td>124</td>
</tr>
<tr>
<td>4.35</td>
<td>Binary mixture of kaolinite/quartz in soil of Fourth canal</td>
<td>125</td>
</tr>
<tr>
<td>4.36</td>
<td>Binary mixture of kaolinite/hematite in soil of Fourth canal</td>
<td>126</td>
</tr>
<tr>
<td>4.37</td>
<td>Binary mixture of quartz/hematite in soil of Fourth canal</td>
<td>128</td>
</tr>
<tr>
<td>5.1</td>
<td>Layout of a typical powder diffractometer</td>
<td>143</td>
</tr>
<tr>
<td>5.2</td>
<td>XRD pattern of soil for First canal site 1 samples (S₁-S₃)</td>
<td>145</td>
</tr>
<tr>
<td>5.3</td>
<td>XRD pattern of soil for First canal site 2 samples (S₄-S₆)</td>
<td>145</td>
</tr>
<tr>
<td>5.4</td>
<td>XRD pattern of soil for First canal site 3 samples (S₇-S₉)</td>
<td>146</td>
</tr>
<tr>
<td>5.5</td>
<td>XRD pattern of soil for Second canal site 1 samples (S₁₀-S₁₂)</td>
<td>146</td>
</tr>
<tr>
<td>5.6</td>
<td>XRD pattern of soil for Second canal site 2 samples (S₁₃-S₁₅)</td>
<td>147</td>
</tr>
<tr>
<td>5.7</td>
<td>XRD pattern of soil for Second canal site 3 samples (S₁₆-S₁₈)</td>
<td>147</td>
</tr>
<tr>
<td>5.8</td>
<td>XRD pattern of soil for Third canal site 1 samples (S₁₉-S₂₁)</td>
<td>148</td>
</tr>
<tr>
<td>5.9</td>
<td>XRD pattern of soil for Third canal site 2 samples (S₂₂-S₂₄)</td>
<td>148</td>
</tr>
<tr>
<td>5.10</td>
<td>XRD pattern of soil for Third canal site 3 samples (S₂₅-S₂₇)</td>
<td>149</td>
</tr>
<tr>
<td>5.11</td>
<td>XRD pattern of soil for Fourth canal site 1 samples (S₂₈-S₃₀)</td>
<td>149</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>5.12</td>
<td>XRD pattern of soil for Fourth canal site 2 samples (S_{31}-S_{33})</td>
<td>150</td>
</tr>
<tr>
<td>5.13</td>
<td>XRD pattern of soil for Fourth canal site 3 samples (S_{34}-S_{36})</td>
<td>150</td>
</tr>
<tr>
<td>6.1</td>
<td>Typical scanning electron microscope instrument</td>
<td>189</td>
</tr>
<tr>
<td>6.2</td>
<td>Block diagram of the essential components of a typical Energy Dispersive X-ray spectrometer</td>
<td>193</td>
</tr>
<tr>
<td>6.3</td>
<td>SEM image of soil in First canal from site 1 sample (S_{2})</td>
<td>194</td>
</tr>
<tr>
<td>6.4</td>
<td>SEM image of soil in First canal from site 1 sample (S_{3})</td>
<td>195</td>
</tr>
<tr>
<td>6.5</td>
<td>SEM image of soil in First canal from site 2 sample (S_{5})</td>
<td>195</td>
</tr>
<tr>
<td>6.6</td>
<td>SEM image of soil in First canal from site 2 sample (S_{6})</td>
<td>196</td>
</tr>
<tr>
<td>6.7</td>
<td>SEM image of soil in First canal from site 3 sample (S_{8})</td>
<td>196</td>
</tr>
<tr>
<td>6.8</td>
<td>SEM image of soil in First canal from site 3 sample (S_{9})</td>
<td>197</td>
</tr>
<tr>
<td>6.9</td>
<td>SEM image of soil in Second canal from site 1 sample (S_{11})</td>
<td>197</td>
</tr>
<tr>
<td>6.10</td>
<td>SEM image of soil in Second canal from site 1 sample (S_{12})</td>
<td>198</td>
</tr>
<tr>
<td>6.11</td>
<td>SEM image of soil in Second canal from site 2 sample (S_{14})</td>
<td>198</td>
</tr>
<tr>
<td>6.12</td>
<td>SEM image of soil in Second canal from site 2 sample (S_{15})</td>
<td>199</td>
</tr>
<tr>
<td>6.13</td>
<td>SEM image of soil in Second canal from site 3 sample (S_{17})</td>
<td>199</td>
</tr>
<tr>
<td>6.14</td>
<td>SEM image of soil in Second canal from site 3 sample (S_{18})</td>
<td>200</td>
</tr>
<tr>
<td>6.15</td>
<td>SEM image of soil in Third canal from site 1 sample (S_{20})</td>
<td>200</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.16</td>
<td>SEM image of soil in Third canal from site 1 sample (S_{21})</td>
<td>201</td>
</tr>
<tr>
<td>6.17</td>
<td>SEM image of soil in Third canal from site 2 sample (S_{23})</td>
<td>201</td>
</tr>
<tr>
<td>6.18</td>
<td>SEM image of soil in Third canal from site 2 sample (S_{24})</td>
<td>202</td>
</tr>
<tr>
<td>6.19</td>
<td>SEM image of soil in Third canal from site 3 sample (S_{26})</td>
<td>202</td>
</tr>
<tr>
<td>6.20</td>
<td>SEM image of soil in Third canal from site 3 sample (S_{27})</td>
<td>203</td>
</tr>
<tr>
<td>6.21</td>
<td>SEM image of soil in Fourth canal from site 1 sample (S_{29})</td>
<td>203</td>
</tr>
<tr>
<td>6.22</td>
<td>SEM image of soil in Fourth canal from site 1 sample (S_{30})</td>
<td>204</td>
</tr>
<tr>
<td>6.23</td>
<td>SEM image of soil in Fourth canal from site 2 sample (S_{32})</td>
<td>204</td>
</tr>
<tr>
<td>6.24</td>
<td>SEM image of soil in Fourth canal from site 2 sample (S_{33})</td>
<td>205</td>
</tr>
<tr>
<td>6.25</td>
<td>SEM image of soil in Fourth canal from site 3 sample (S_{35})</td>
<td>205</td>
</tr>
<tr>
<td>6.26</td>
<td>SEM image of soil in Fourth canal from site 3 sample (S_{36})</td>
<td>206</td>
</tr>
<tr>
<td>6.3a</td>
<td>EDX spectrum of soil for First canal site 1 sample (S_{2})</td>
<td>209</td>
</tr>
<tr>
<td>6.4a</td>
<td>EDX spectrum of soil for First canal site 1 sample (S_{3})</td>
<td>209</td>
</tr>
<tr>
<td>6.5a</td>
<td>EDX spectrum of soil for First canal site 2 sample (S_{5})</td>
<td>209</td>
</tr>
<tr>
<td>6.6a</td>
<td>EDX spectrum of soil for First canal site 2 sample (S_{6})</td>
<td>210</td>
</tr>
<tr>
<td>6.7a</td>
<td>EDX spectrum of soil for First canal site 3 sample (S_{8})</td>
<td>210</td>
</tr>
<tr>
<td>6.8a</td>
<td>EDX spectrum of soil for First canal site 3 sample (S_{9})</td>
<td>210</td>
</tr>
<tr>
<td>6.9a</td>
<td>EDX spectrum of soil for Second canal site 1 sample (S_{11})</td>
<td>211</td>
</tr>
<tr>
<td>6.10a</td>
<td>EDX spectrum of soil for Second canal site 1 sample (S_{12})</td>
<td>211</td>
</tr>
<tr>
<td>6.11a</td>
<td>EDX spectrum of soil for Second canal site 2 sample (S_{14})</td>
<td>211</td>
</tr>
<tr>
<td>6.12a</td>
<td>EDX spectrum of soil for Second canal site 2 sample (S_{15})</td>
<td>212</td>
</tr>
<tr>
<td>6.13a</td>
<td>EDX spectrum of soil for Second canal site 3 sample (S_{17})</td>
<td>212</td>
</tr>
<tr>
<td>6.14a</td>
<td>EDX spectrum of soil for Second canal site 3 sample (S_{18})</td>
<td>212</td>
</tr>
<tr>
<td>6.15a</td>
<td>EDX spectrum of soil for Third canal site 1 sample (S_{20})</td>
<td>213</td>
</tr>
<tr>
<td>6.16a</td>
<td>EDX spectrum of soil for Third canal site 1 sample (S_{21})</td>
<td>213</td>
</tr>
<tr>
<td>6.17a</td>
<td>EDX spectrum of soil for Third canal site 2 sample (S_{23})</td>
<td>213</td>
</tr>
<tr>
<td>6.18a</td>
<td>EDX spectrum of soil for Third canal site 2 sample (S_{24})</td>
<td>214</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>6.19a</td>
<td>EDX spectrum of soil for Third canal site 3 sample (S_{26})</td>
<td>214</td>
</tr>
<tr>
<td>6.20a</td>
<td>EDX spectrum of soil for Third canal site 3 sample (S_{27})</td>
<td>214</td>
</tr>
<tr>
<td>6.21a</td>
<td>EDX spectrum of soil for Fourth canal site 1 sample (S_{29})</td>
<td>215</td>
</tr>
<tr>
<td>6.22a</td>
<td>EDX spectrum of soil for Fourth canal site 1 sample (S_{30})</td>
<td>215</td>
</tr>
<tr>
<td>6.23a</td>
<td>EDX spectrum of soil for Fourth canal site 2 sample (S_{32})</td>
<td>215</td>
</tr>
<tr>
<td>6.24a</td>
<td>EDX spectrum of soil for Fourth canal site 2 sample (S_{33})</td>
<td>216</td>
</tr>
<tr>
<td>6.25a</td>
<td>EDX spectrum of soil for Fourth canal site 3 sample (S_{35})</td>
<td>216</td>
</tr>
<tr>
<td>6.26a</td>
<td>EDX spectrum of soil for Fourth canal site 3 sample (S_{36})</td>
<td>216</td>
</tr>
<tr>
<td>6.27</td>
<td>Relative distribution of trace elements in soils</td>
<td>221</td>
</tr>
<tr>
<td>7.1</td>
<td>Typical TGA-DTA-DTG instrument (TA model SDT Q600)</td>
<td>235</td>
</tr>
<tr>
<td>7.2</td>
<td>Thermogravimetric analysis of soil sample (S_2)</td>
<td>237</td>
</tr>
<tr>
<td>7.3</td>
<td>Thermogravimetric analysis of soil sample (S_8)</td>
<td>237</td>
</tr>
<tr>
<td>7.4</td>
<td>Thermogravimetric analysis of soil sample (S_{14})</td>
<td>238</td>
</tr>
<tr>
<td>7.5</td>
<td>Thermogravimetric analysis of soil sample (S_{20})</td>
<td>238</td>
</tr>
<tr>
<td>7.6</td>
<td>Thermogravimetric analysis of soil sample (S_{26})</td>
<td>239</td>
</tr>
<tr>
<td>7.7</td>
<td>Thermogravimetric analysis of soil sample (S_{32})</td>
<td>239</td>
</tr>
</tbody>
</table>