NOMENCLATURE

Batch process

\[C_o \] Initial concentration of metal in aqueous solution, mg/L
\[C_t \] Concentration of metal in aqueous solution after ‘t’ min, mg/L
\[C_e \] Equilibrium adsorption concentration of metal, mg/L
\[t \] Agitation time, min
\[T \] Absolute temperature, K
\[w \] Biosorbent dosage, g
\[b \] Langmuir equilibrium constant
\[n \] Freundlich constant for metal in the aqueous solution
\[d_p \] Biosorbent size, μm
\[V \] Volume of aqueous solution, mL
\[w \] Amount of biosorbent taken per 1L of aqueous solution, g/L
\[q_e \] Mass of solute adsorbed per mass of biosorbent at equilibrium, mg/g
\[q_t \] Mass of solute adsorbed per mass of biosorbent at ‘t’ min, mg/g
\[q_m \] Langmuir monolayer capacity, mg/g
\[k \] Second order rate constant, g/mg.min
\[k_f \] Freundlich coefficient for metal in aqueous solution, L/g
\[k_{ad} \] First order rate constant, min\(^{-1}\)
\[R_L \] Separation factor

Continuous process

\[a_1 \] Slope at concentration \(C_1 \)
\[a_2 \] Slope at concentration \(C_2 \)
\[b_1 \] Intercept at concentration \(C_1 \)
\[b_2 \] Intercept at concentration \(C_2 \)
\[C_F \] Effluent concentration at influent concentration \(C_2 \), mg/L
\[C_B \] Effluent concentration at influent concentration \(C_1 \), mg/L
\[C_o \] Initial concentration in aqueous solution, mg/L
\[C_i \] Inlet concentration of the metal in solution, mg/L
C_2 Outlet concentration of the metal in solution, mg/L
k Adsorption rate constant
k_{1c}, k_{2c} Constants
k_{AB} Kinetic constant (L/mg min)
k_{Th} Thomas rate constant (L/mg min)
k_{YN} Yoon-Nelson rate constant (L/min)
L Bed height, cm
L_o Minimum column height, cm
m_s Mass of biosorbent, g
N_o Saturation concentration,
Q Volumetric flow rate, L/min
q_t Amount of adsorbate adsorbed per unit mass of adsorbent at any time t, mg / g
q_{cal} Calculated amount of adsorbate adsorbed per unit mass of adsorbent at equilibrium, mg / g
q_{exp} Experimental amount of adsorbate adsorbed per unit mass of adsorbent at equilibrium, mg / g
q_m Maximum adsorption capacity of the adsorbent, mg / g
R^2 Coefficient of determination
t Time, min
T Temperature, K
τ Time required for 50% adsorbate breakthrough, min