LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Block diagram of a remote sensing system.</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Hyperspectral image cube from Airborne Visible/Infrared Imaging Spectrometer.</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Hyperspectral vs. multispectral band coverage.</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Graph describing the Hughes effect. For a given set of training samples ((m)), average accuracy obtained decreases as number of features ((n)) increases.</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Hyperplanes for classification of non-linearly separable data sets.</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>One versus the rest multi-class classifier.</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>Pair wise multi-class classifier.</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>General architecture of the proposed classification system.</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Four cases of mixed pixels: sub-pixel, boundary pixel, intergrade pixel and linear sub-pixel.</td>
<td>65</td>
</tr>
<tr>
<td>5.1</td>
<td>Indian Pines 220 band AVIRIS hyperspectral data set. (a) False color composite image. (b) Test ground truth mask. (c) Training ground truth file. (d) Legend for ground truth masks with test and train sample counts shown in parenthesis as ((test_sample_count, train_sample_count)).</td>
<td>82</td>
</tr>
<tr>
<td>5.2</td>
<td>Washington DC mall 191 band HYDICE hyperspectral data set. (a) False color composite image. (b) Test ground truth mask. (c) Train ground truth mask. (d) Legend for ground truth masks with test and train sample counts given in parenthesis as ((test_sample_count, train_sample_count)).</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>University of Pavia 103 band ROSIS sensor data set. (a) False color composite image. (b) Test ground truth mask. (c) Training ground truth mask. (d) Legend for ground truth masks with test and train sample counts given in parenthesis as ((test_sample_count, train_sample_count)).</td>
<td>84</td>
</tr>
<tr>
<td>5.4</td>
<td>IRS-1B LISS-I 4 band Anantapur data set. (a) False color composite image. (b) Test ground truth mask. (c) Training ground truth mask. (d) Legend for ground truth masks with test</td>
<td>85</td>
</tr>
</tbody>
</table>
and train sample counts given in parenthesis as
(test_sample_count, train_sample_count).

5.5 IRS-P6 LISS-IV 3 band Ujjain data set. (a) False color
composite image. (b) Test ground truth mask. (c) Train ground
truth mask. (d) Legend for ground truth masks with test and
train sample counts shown in parenthesis as
(test_sample_count, train_sample_count).

5.6 IRS-P6 LISS-IV 3 band Hissar data set. (a) False color
composite image. (b) Test ground truth mask. (c) Train ground
truth file. (d) Legend for ground truth masks with test and train
sample counts shown in parenthesis as (test_sample_count,
train_sample_count).

5.7 GUI snapshot for the Hyperspectral classification software.

5.8 Screen snapshot of the command line interface for the
Hyperspectral classification software.

5.9 The effect of ϵ on band count and the relation between band
count and accuracy for the Indian Pines data set.

5.10 The effect of ϵ on band count and how the changing band count
effects classification time for the Indian Pines data set.

5.11 The effect of ϵ on band count and the relation between band
count and accuracy for the University of Pavia data set.

5.12 The effect of ϵ on band count and how the changing band count
effects classification time for the University of Pavia data set.

5.13 Indian Pines data set (a) False color composite. (b) MLC
classification map. (c) ECHO classifier classification map. (d)
SVM classification map. (e) Mixed pixel map (dark pixels
indicate mixed pixels). (f) SVM-hybrid classification map.

5.14 Washington DC mall data set. (a) False color composite.
(b) MLC classification map. (c) ECHO classification map.

5.15 Washington DC mall data set. (a) SVM classification map.
(b) Mixed pixel map (dark pixels indicate mixed pixels).
(c) SVM-hybrid classification map.

5.16 University of Pavia data set. (a) False color composite.
(b) MLC classification map. (c) ECHO classification map.
(d) SVM classification map. (e) Mixed pixel map (dark pixels
indicate mixed pixels). (f) SVM-hybrid classification map.

5.17 Anantapur data set. (a) False color composite. (b) MLC classification map. (c) ECHO classification map. (d) SVM classification map. (e) Mixed pixel map. (f) SVM-hybrid classification map.

5.18 Hissar data set. (a) False color composite. (b) MLC classification map. (c) ECHO classification map. (d) SVM classification map. (e) Mixed pixel map. (f) SVM-hybrid classification map.

5.19 Ujjain data set. (a) False color composite. (b) MLC classification map. (c) ECHO classification map. (d) SVM classification map. (e) Mixed pixel map. (f) SVM-hybrid classification map.