CONTENTS

Declaration i
Certificate ii
Acknowledgments iii
Nomenclature and abbreviations v
Synopsis vii

CHAPTER 1
INTRODUCTION

1.1 Composites 1
1.2 Classification of Composites 1
 1.2.1 Polymer Matrix Composites (PMC’s) 1
 1.2.2 Ceramic Matrix Composites (CMC’s) 2
 1.2.3 Metal Matrix Composites (MMC’s) 2
1.3 Metal-Metal Composites 7
1.4 Aim of the Work 7
1.5 Work at a Glance 7
 References 8

CHAPTER 2
METHODS

2.1 Fabrication Facilities 10
 2.1.1 Melting and Casting 10
 2.1.2 Secondary Processing 11
2.2 Testing Facilities. 12
 2.2.1 Physical Testing 12
 2.2.1.1 Optical Microscopy 12
 2.2.1.2 SEM and EDX 12
 2.2.1.3 XRD 13
 2.2.1.4 Melting Behavior 14
 2.2.1.5 Electrical Resistivity 15
 2.2.1.6 Density and Porosity 15
 2.2.2 Mechanical Testing 16
 2.2.2.1 Hardness 16
CHAPTER 3
MATERIALS

3.1 Selection of matrix material

3.2 Selection of reinforcement material.
 3.2.1 Hardness Studies
 3.2.2 Electrical resistivity studies
 3.2.3 Density studies of reinforcement material
 3.2.4 Preparation of binary and ternary alloys
 3.2.5 Metallographic studies of investigated alloys
 3.2.6 EDX analysis of investigated alloys

3.3 Selection of reinforcement size
 3.3.1 production of powders
 3.3.2 characterization of powders
 3.3.2.1 Alloy powders
 3.3.2.2 Xrd of powders
 3.3.2.3 Melting point analysis of powders.
 3.3.2.4 Density of powders
 3.3.2.5 Sieve analysis of powder.

3.4 Conclusions

References

CHAPTER 4
FABRICATION AND CHARACTERIZATION OF COMPOSITES

4.1 Introduction

4.2 Literature review

4.3 Experimental Work
 4.3.1 Fabrication of Composites
 4.3.2 Extrusion of Composites
4.4 Results and discussion
4.4.1 Density Studies
4.4.2 Electrical Resistivity Studies
4.4.3 Hardness Studies
4.4.4 Tensile Behavior of Composites
4.5 Conclusions

References

CHAPTER 5
DEFORMATION STUDIES

5.1 Introduction
5.1.1 Upset forging
5.1.2 Frictional effects in metal forming
5.1.3 Modes of deformation
5.1.4 True stress and True strain
5.1.5 Engineering stress and Engineering strain
5.1.6 Computation of Plastic Strain

5.2 Literature review

5.3 Experimental Details
5.3.1 Ring compression test
5.3.2 Compression testing of composites

5.4 Results and discussion
5.4.1 Compressive behaviour
5.4.2 Hollomon power law parameters
5.4.3 Hardness behaviour during work hardening
5.4.4 Radius of curvature of the bulge
5.4.5 Strain path equations
5.4.6 Determination of stress components
5.4.7 Ring compression test

5.5 Conclusions

References
CHAPTER 6
FINITE ELEMENT SIMULATION OF COLD UPSETTING PROCESS

6.1 Introduction 101
6.2 Literature review 102
6.3 Procedure adopted in modeling the problem under taken 104
 6.3.1 Contact Analysis 104
 6.3.2 Material Properties and Real Constants 106
6.4 Results and discussion 107
6.5 Conclusions 127
6.6 References 128

CHAPTER 7
WEAR STUDIES

7.1 Introduction 135
7.2 Types of wear 135
 7.2.1 Abrasive wear 135
 7.2.2 Adhesive wear 136
 7.2.3 Erosive wear 136
 7.2.4 Surface fatigue wear 137
 7.2.5 Corrosive wear 137
7.3 Literature review 138
7.4 Experimental Work 142
 7.4.1 Dry sliding wear tests 142
7.5 Results and discussion 144
 7.5.1 Effect of load on coefficient of friction (μ) 146
 7.5.2 Effect of load on wear rate 147
 7.5.3 Effect of sliding distance on wear rate 148
 7.5.4 Microstructure studies 150
7.6 Conclusions 153
References 154