NOMENCLATURE

A Cross sectional area of beam
a Crack depth ratio
B Width of the beam
D Depth of the beam
D_{ij} Bending stiffness
E_{f} Elastic modulus for fiber
E_{m} Elastic modulus for matrix
E_{1} Longitudinal elastic modulus
E_{2} Transverse elastic modulus
E' Equals equivalent modulus of elasticity
F_{p} Plasticity adjustment factor
f Frequency (Hz)
\omega Forcing frequency (Hz)
G_{f} Shear modulus of fiber
G_{m} Shear modulus of matrix
G_{12} In plane shear modulus
I Moment of inertia of the rectangular beam (mm^4)
[I] Identity matrix
[K] Stiffness of the matrix
K_{1} Elastic stress intensity factor
[K_{c}] Stiffness matrix of the crack segment
L Laminated beam length
L_{1} Length of left segment
L_{2} Length of right segment
L_{c} Crack position from fixed end
M Bending moment
[M] Mass matrix
P Applied axial force

$[K_1]$ Reduced stiffness matrix

$[\overline{K}_{II}]$ Transformed Reduced stiffness matrix

R Frequency ratio

R_p Modified axial crack depth ratio

R_m Modified bending crack depth ratio

R_{pm} Modified axial-bending crack depth ratio

R_q Modified shear crack depth ratio

r First estimation of plastic zone size

r_p Crack tip plastic zone size

$[T]$ Transfer matrix

$[T_L]$ Transfer matrix of left segment

$[T_R]$ Transfer matrix of Right segment

$[T_c]$ Transfer matrix of the crack segment

$[T_{ce}]$ Transfer matrix of cracked beam element

V Shear force

V_f Volume fraction of fiber

V_m Volume fraction of matrix

W_f Weight of fiber

W_m Weight of matrix

Z_0 Middle layer

Z_1 Direct distance from middle layer Z_0 axis to Z_1 axis

Z_2 Direct distance from middle layer Z_0 axis to Z_2 axis

Z_3 Direct distance from middle layer Z_0 axis to Z_3 axis

Z_4 Direct distance from middle layer Z_0 axis to Z_4 axis

Z_5 Direct distance from middle layer Z_0 axis to Z_5 axis

ΔC Compliance matrix of cracked element

ΔC_{pp} Axial compliance force

ΔC_{mm} Bending compliance force

ΔC_{pm} Axial-Bending compliance force

ΔC_{qq} Shear compliance force
\(\delta \) Deflection of beam
\(\theta \) Ply angle
\(\gamma_f \) Poisson’s ratio of fiber
\(\gamma_m \) Poisson’s ratio of matrix
\(\gamma_{12} \) Major passion’s ratio
\(\gamma_{21} \) Minor passion’s ratio
\(\rho_c \) Density of FRC beam
\(\rho_f \) Density of fiber
\(\rho_m \) Density of matrix
\(\sigma_p \) Axial normal stress
\(\sigma_m \) Bending stress
\(\tau \) Shear stress
\(\sigma_y \) Near tip stress
\(\sigma_{ys} \) Yield strength of the material