TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td></td>
<td>xxiv</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION TO AUTOMOTIVE ANTENNAS</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Automotive Antenna Design Requirements</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Automotive Antenna Technology</td>
<td>5</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Antenna Placement in Automobiles</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>AUTOMOTIVE ANTENNA-TRENDS & DEVELOPMENTS</td>
<td>10</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Single Frequency Automotive Antennas</td>
<td>11</td>
</tr>
<tr>
<td>1.2.1.1</td>
<td>Rod antennas</td>
<td>11</td>
</tr>
<tr>
<td>1.2.1.2</td>
<td>On-glass antennas</td>
<td>12</td>
</tr>
<tr>
<td>1.2.1.3</td>
<td>Patch antennas</td>
<td>13</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Multi-service Automotive Antennas</td>
<td>13</td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>Integrated antennas</td>
<td>14</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Shark fin antenna</td>
<td>16</td>
</tr>
<tr>
<td>1.2.2.3</td>
<td>Other multi-service antennas</td>
<td>18</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Automotive Radar Antennas</td>
<td>20</td>
</tr>
<tr>
<td>1.2.3.1</td>
<td>Series fed microstrip array antenna</td>
<td>22</td>
</tr>
<tr>
<td>1.2.3.2</td>
<td>Grid array antenna</td>
<td>23</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Important Conclusions from Literature</td>
<td>24</td>
</tr>
<tr>
<td>1.3</td>
<td>OBJECTIVES OF THE THESIS</td>
<td>25</td>
</tr>
</tbody>
</table>
1.4 SYNOPSIS OF THE THESIS

2 MULTI-FREQUENCY ANTENNA DESIGN FOR SATELLITE SERVICES

2.1 GLOBAL NAVIGATION SATELLITE SYSTEM

2.2 ANTENNA DESIGN METHODOLOGIES

2.2.1 Stacked Patch Antennas

2.2.2 Slot Loaded Antennas

2.3 MULTI-FREQUENCY ANTENNA DESIGN

2.3.1 Antenna Geometry

2.3.2 Reflection Coefficient Characteristics

2.3.3 Impact of Layout Parameters on Resonant Frequencies

2.3.4 Radiation Characteristics

2.3.5 Antenna Features

2.4 ON-CAR PERFORMANCE OF PENTA-BAND MSPA

2.4.1 Impedance Performance

2.4.2 Far-field Performance

2.5 CONCLUSION

3 COMPACT MULTI-SERVICE ANTENNAS FOR INTELLIGENT TRANSPORT SYSTEM

3.1 INTELLIGENT TRANSPORT SYSTEM

3.2 MULTI-SERVICE ANTENNA DESIGN FOR ITS

3.3 MODIFIED MULTI-SERVICE PLANAR PIFA

3.3.1 Antenna Geometry

3.3.2 PCB Integration of Modified PIFA

3.3.3 Shared Aperture Antenna Development

3.3.4 Reflection Coefficient Characteristics

3.3.5 Impact of Antenna Layout Parameters

3.3.6 Radiation Characteristics

3.3.7 Antenna Features
3.4 MULTI-SERVICE FOLDED MONOPOLE ANTENNA 68
 3.4.1 Antenna Geometry 69
 3.4.2 Reflection Coefficient Characteristics 72
 3.4.3 Radiation Characteristics 74
 3.4.4 Antenna features 75
3.5 AUTOMOTIVE UWB TECHNOLOGY 76
3.6 COMPACT UWB MONOPOLE ANTENNA 78
 3.6.1 Antenna Geometry 78
 3.6.2 Effect of Ground Plane Modifications 81
 3.6.2.1 Effect of semi-circular slit 82
 3.6.2.2 Effect of extended ground stub 83
 3.6.3 Measurement of VSWR Characteristics 84
 3.6.4 Measurement of Radiation Characteristics 84
 3.6.5 Antenna Features 86
3.7 STUDIES ON ANTENNA HOUSING EFFECTS 87
 3.7.1 Mutual Coupling Analysis in Shark Fin Housing 88
 3.7.1.1 Integrated multi-service antenna system 89
 3.7.1.2 Highly integrated multi-service antenna system 93
 3.7.2 Antenna Placement inside the Vehicle 96
 3.7.2.1 Effect on modified PIFA and quad-band monopole 96
 3.7.2.2 Effect on UWB antenna 97
3.8 CONCLUSION 100

4 DIVERSITY ANALYSIS OF COMPACT ANTENNA CONFIGURATIONS 101
4.1 OVERVIEW OF DIVERSITY TECHNIQUES 101
 4.1.1 Spatial Diversity 102
 4.1.2 Polarization Diversity 103
 4.1.3 Pattern Diversity 103
 4.1.4 Processing Techniques 103
4.2 DIVERSITY PERFORMANCE EVALUATION METRICS 105
 4.2.1 Envelope Correlation Coefficient (ECC) 105
 4.2.2 Diversity Gain 107
 4.2.3 Mean Effective Gain (MEG) 109
4.3 PLACEMENT OF DIVERSITY ANTENNAS IN VEHICLES 110
4.4 DIVERSITY PERFORMANCE OF MODIFIED PIFA 112
 4.4.1 Spatial and Pattern Diversified Modified PIFA 112
 4.4.2 Diversity Performance Evaluation 115
4.5 DIVERSITY PERFORMANCE OF QUAD-BAND MONOPOLE 118
 4.5.1 Four Port Polarization and Pattern Diversity Antenna 118
 4.5.2 Diversity Performance Evaluation 122
4.6 MIMO/DIVERSITY ANALYSIS OF UWB ANTENNA 125
 4.6.1 Construction of MIMO/diversity UWB antenna 127
 4.6.2 MIMO/diversity Performance Evaluation 129
4.7 CONCLUSION 132

5 WIDEBAND GRID ARRAY ANTENNAS FOR AUTOMOTIVE RADAR SYSTEMS 133
 5.1 AUTOMOTIVE RADAR TECHNOLOGY 133
 5.2 GRID ARRAY ANTENNAS 134
 5.3 DESIGN OF REACTANCE LOADED MODIFIED GAA 136
 5.3.1 Array Geometry 136
 5.3.2 VSWR Characteristics 139
 5.3.3 Radiation Characteristics 140
 5.4 DESIGN OF WIDEBAND GAA USING ASTROID RADIATORS 143
 5.4.1 Design of Wideband GAA without Amplitude Tapering 143
 5.4.2 Design of Wideband GAA with Amplitude Tapering 144
 5.4.3 VSWR Characteristics 146
 5.4.4 Radiation Characteristics 146
5.5 FEATURES OF WIDEBAND GAAs 149
5.6 CONCLUSION 150

6 CONCLUSIONS AND FUTURE SCOPE 152
6.1 CONCLUSIONS 152
6.6 FUTURE SCOPE 154

REFERENCES 155
LIST OF PUBLICATIONS 165