CHAPTER 3

SUBMANIFOLDS OF AN ALMOST r-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH A QUARTER SYMMETRIC SEMI-METRIC CONNECTION

3.1. Introduction

Almost complex and almost contact submanifolds were studied by R. S. Mishra in [9]. Lovejoy S. K. Das et al. considered submanifolds of a Riemannian manifold endowed with a quarter symmetric semi-metric connection in [6]. I. Mihai and K. Matsumoto studied submanifolds of an almost r-paracontact Riemannian manifold of P-Sasakian type in [8]. Hypersurfaces of an almost r-paracontact Riemannian manifold with quarter symmetric metric connection were studied by M. Ahmad, J. B. Jun and A. Haseeb in [1]. Also M. Ahmad, C. Ozgur and A. Haseeb studied some properties of hypersurfaces of an almost r-paracontact Riemannian manifold with quarter symmetric non-metric connection in [2].
Submanifolds of an almost r-paracontact Riemannian manifold with a semi-symmetric semi-metric connection were studied by M. Ahmad, J. B. Jun and A. Haseeb in [3]. Motivated by studies of authors in [1], [2], [3], in this chapter we study some properties of Hypersurfaces and Submanifolds of an almost r-paracontact Riemannian manifold with a quarter symmetric semi-metric connection.

Let ∇ be a linear connection in a differentiable manifold M^{n+1}. The torsion tensor T and the curvature tensor R of ∇ are given respectively by

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y].$$

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

In [7], S. Golab introduced the idea of a quarter symmetric linear connection in a differentiable manifold. A linear connection is said to be quarter symmetric connection if its torsion tensor T is of the form

$$T(X,Y) = u(Y)\varphi X - u(X)\varphi Y,$$

where u is a 1-form and φ is a (1,1) tensor field.

In this chapter, we study quarter symmetric semi-metric connection in an almost r-paracontact Riemannian manifold. We consider hypersurfaces and submanifolds of almost r-paracontact Riemannian manifold endowed with a quarter symmetric semi-metric connection. We also obtain Gauss and Codazzi equations for hypersurfaces and curvature tensor and Weingarten equation for submanifolds of almost r-paracontact Riemannian manifold with respect to quarter symmetric semi-metric connection.
3.2. Preliminaries

Let M^{n+1} be an $(n+1)$-dimensional differentiable manifold of class C^∞ and M^n be the hypersurface immersed in M^{n+1} by the differential immersion $\tau : M^n \to M^{n+1}$. The differential $d\tau$ of the immersion τ is denoted by B. The vector field X in the tangent space of M^n corresponds to a vector-field BX in M^{n+1}. Suppose that the enveloping manifold M^{n+1} is an almost r-paracontact Riemannian manifold with metric \tilde{g}. Then the hypersurface M^n is also an almost r-paracontact Riemannian manifold with induced metric g defined by

$$g(\varphi X, Y) = \tilde{g}(B\varphi X, BY),$$

where X and Y are the arbitrary vector fields and φ is a tensor field of type $(1,1)$. If the Riemannian manifolds M^{n+1} and M^n are both orientable, we can choose a unique vector field N defined along M^n such that

$$\tilde{g}(B\varphi X, N) = 0$$

and

$$\tilde{g}(N, N) = 1.$$

We call this vector field N the normal vector field to the hypersurface M^n.

We now define a quarter symmetric semi-metric connection ∇ by

$$\nabla X Y = \tilde{\nabla} X Y - \eta^a(\tilde{X})\tilde{\varphi} Y + \tilde{g}(\tilde{\varphi} \tilde{X}, \tilde{Y})\tilde{\xi}_a$$

(3.2.1)

for arbitrary vector fields \tilde{X} and \tilde{Y} tangents to M^{n+1}, where $\tilde{\nabla}$ denotes the Levi-Civita connection with respect to Riemannian metric \tilde{g}, η^a is a 1-form and $\tilde{\xi}_a$ is the vector field defined by

$$\eta^a(\tilde{X}) = \tilde{g}(\tilde{\xi}_a, \tilde{X})$$

for an arbitrary vector field \tilde{X} of M^{n+1}. Also

$$\tilde{g}(\tilde{\varphi} \tilde{X}, \tilde{Y}) = \tilde{g}(\tilde{X}, \tilde{\varphi} \tilde{Y}).$$

Let us put
(3.2.2) \[\xi_{\alpha} = B_{\xi_{\alpha}} + a_{\alpha}N, \]

where \(a_{\alpha} = \eta^{\alpha}(N) \), \(\xi_{\alpha} \) is a vector field and \(a_{\alpha} \) is a function on \(M^n \).

We have the following theorem:

Theorem 3.2.1. The connection induced on the hypersurface of an almost \(r \)-paracontact Riemannian manifold with a quarter symmetric semi-metric connection with respect to the unit normal is also quarter symmetric semi-metric connection.

Proof. Let \(\tilde{\nabla} \) be the induced connection from \(\tilde{\nabla} \) on the hypersurface with respect to the unit normal \(N \), then we have

(3.2.3) \[\tilde{\nabla}_{\alpha} BY = B(\tilde{\nabla}_{\alpha} Y) + h(X,Y)N \]

for arbitrary vector fields \(X \) and \(Y \) on \(M^n \), \(h \) being a second fundamental tensor of the hypersurface \(M^n \). Similarly, let \(\nabla \) be connection induced on the hypersurface from \(\tilde{\nabla} \) with respect to the unit normal \(N \), then we have

(3.2.4) \[\tilde{\nabla}_{\alpha} BY = B(\nabla_{\alpha} Y) + m(X,Y)N \]

for arbitrary vector fields \(X \) and \(Y \) of \(M^n \), \(m \) being a tensor field of type \((0, 2)\) on the hypersurface \(M^n \).

From equation (3.2.1), we get

\[\tilde{\nabla}_{\alpha} BY = \tilde{\nabla}_{\alpha} BY - \eta^{\alpha}(BX)\phi BY + \tilde{g}(\phi BX, BY)\xi_{\alpha}. \]

Using (3.2.3) and (3.2.4) in the above equation, we find

(3.2.5) \[B(\nabla_{\alpha} Y) + m(X,Y)N = B(\tilde{\nabla}_{\alpha} Y) + h(X,Y)N - \eta^{\alpha}(X)B\phi Y \]

\[-\eta^{\alpha}(X)b(Y)N + g(X,Y)(B\xi_{\alpha} + a_{\alpha}N), \]

where

\[\eta^{\alpha}(BX) = \eta^{\alpha}(X), \]

\[\phi BX = \phi BX + b(X)N, \]

\[b(X) = g(X,U), \]

\[\phi N = BU + KN, \]
and \[g(B\phi X, BY) = g(\phi X, Y). \]

Comparison of tangential and normal vector fields in (3.2.5) yields,

(3.2.6) \[\nabla_x Y = \tilde{\nabla}_x Y - \eta^a(X)\phi Y + g(\phi X, Y)\xi_\alpha \]

and

(3.2.7) \[m(X, Y) = h(X, Y) - \eta^a(X)b(Y) + a_\alpha g(\phi X, Y). \]

Thus, we have

(3.2.8) \[\nabla_x Y - \nabla_Y X - [X, Y] = \eta^a(Y)\phi X - \eta^a(X)\phi Y. \]

Hence the connection \(\nabla \) induced on \(M^n \) is quarter-symmetric semi-metric connection.

3.3. Totally Geodesic and Totally Umbilical Hypersurfaces

We define \(\tilde{\nabla}_B \) and \(\nabla_B \) respectively by

(3.3.1) \[(\tilde{\nabla}_B)(X, Y) = (\tilde{\nabla}_Y B)(Y) = (\tilde{\nabla}_{\tilde{\nabla}_X B}B)(Y) - B(\tilde{\nabla}_X Y) \]

and

(3.3.2) \[(\nabla_B)(X, Y) = (\nabla_Y B)(Y) = \tilde{\nabla}_{\tilde{\nabla}_X B}B - B(\nabla_X Y), \]

where \(X \) and \(Y \) being arbitrary vector fields on \(M^n \).

Then (3.2.3) and (3.2.4) take the form

(3.3.3) \[(\tilde{\nabla}_X B)Y = h(X, Y)N \]

and

(3.3.4) \[(\nabla_X B)Y = m(X, Y)N. \]

These are Gauss equations with respect to induced connection \(\tilde{\nabla} \) and \(\nabla \) respectively.

Let \(X_1, X_2, X_3, X_4, \ldots, X_n \) be \(n \)-orthonormal vector fields, then the function
\[
\frac{1}{n} \sum_{i=1}^{n} h(X_i, X_i)
\]
is called the mean curvature of \(M^n\) with respect to Riemannian connection \(\nabla\) and
\[
\frac{1}{n} \sum_{i=1}^{n} m(X_i, X_i)
\]
is called the mean curvature of \(M^n\) with respect to the quarter symmetric semi-metric connection \(\nabla\).

Now, we have following definitions:

Definition 3.3.1. The hypersurface \(M^n\) is called totally geodesic hypersurface of \(M^{*+1}\) with respect to the Riemannian connection \(\nabla\) if \(h\) vanishes.

Definition 3.3.2. The hypersurface \(M^n\) is called totally umbilical with respect to connection \(\nabla\) if \(h\) is proportional to the metric tensor \(g\).

We call \(M^n\) is totally geodesic and totally umbilical with respect to quarter symmetric semi-metric connection \(\nabla\) according as the function \(m\) vanishes and proportional to the metric \(g\) respectively.

Now we have following theorems:

Theorem 3.3.1. Let the mean curvature of the invariant hypersurface \(M^n\) with respect to Riemannian connection \(\nabla\) coincides with that of \(M^n\) with respect to \(\nabla\). Then the vector field \(\xi^a\) is tangent to \(M^{*+1}\).

Proof. In view of (3.2.7) we have
\[
m(X_i, X_i) = h(X_i, X_i) - \eta^a(X_i) b(X_i) + a_\alpha g(\varphi X_i, X_i).
\]
Summing up for \(i = 1, 2, 3, \ldots, n\) and dividing by \(n\), we obtain
Theorem 3.3.2. The invariant hypersurface M^n will be totally umbilical with respect to Riemannian connection $\tilde{\nabla}$, if and only if it is totally umbilical with respect to the quarter-symmetric semi-metric connection ∇.

Proof. The proof follows from (3.2.7) easily.

3.4. Gauss, Weingarten and Codazzi Equation

In this section we shall obtain Weingarten equation with respect to the quarter-symmetric semi-metric connection $\tilde{\nabla}$. For the Riemannian connection $\tilde{\nabla}$, these equations are given by

(3.4.1) \[\tilde{\nabla}_{X} N = -BHX \]

for any vector field X in M^n, H being a tensor field of type (1,1) on M^n defined by

(3.4.2) \[g(HX,Y) = h(X,Y). \]

From equation (3.2.1) and (3.4.1), we get

(3.4.3) \[\tilde{\nabla}_{X} N = -BMX + AXN , \]

where \[MX = HX + \eta^n(X)U - b(X)\xi_\alpha \]
and \[AX = a_\alpha b(X) - kn^n(X). \]

We put $\phi_N = BU + kN$, where U is a vector field in M^n and k is a function on M^n. Equation (3.4.3) is Weingarten equation with respect the quarter symmetric semi-metric connection. Let us denote the curvature tensor of M^{n+1} with respect to $\tilde{\nabla}$ by \tilde{K} and that of M^n with respect to ∇ by K. Thus
(3.4.4) \[\tilde{K}(\tilde{X}, \tilde{Y})\tilde{Z} = \tilde{\nabla}_\tilde{X} \tilde{Y}_J \tilde{Z} - \tilde{\nabla}_\tilde{Y} \tilde{X}_J \tilde{Z} - \tilde{\nabla}_{[\tilde{X}, \tilde{Y}]} \tilde{Z} \]

and \[K(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z. \]

The equation of Gauss is given by

\[K(X, Y, Z, U) = \tilde{K}(B_X, B_Y, B_Z, B_Z) + h(X, U)h(Y, Z) - h(Y, U)h(X, Z). \]

where

\[\tilde{K}(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{U}) = g(\tilde{R}(\tilde{X}, \tilde{Y})\tilde{Z}, \tilde{U}) \]

and similar expression for \(K(X, Y, Z, U) \) for \(M^n \).

The equation of Codazzi is given by

\[(\tilde{\nabla}_X h)(Y, Z) - (\tilde{\nabla}_Y h)(X, Z) = \tilde{K}(B_X, B_Y, B_Z, N). \]

We shall find the equation of Gauss and Codazzi with respect the quarter symmetric semi-metric connection. The curvature tensor with respect to quarter symmetric semi-metric connection \(\tilde{\nabla} \) of \(M^{n+1} \) is defined by

\[\tilde{R}(\tilde{X}, \tilde{Y})\tilde{Z} = \tilde{\nabla}_\tilde{X} \tilde{Y}_J \tilde{Z} - \tilde{\nabla}_\tilde{Y} \tilde{X}_J \tilde{Z} - \tilde{\nabla}_{[\tilde{X}, \tilde{Y}]} \tilde{Z}. \]

Putting \(\tilde{X} = B_X, \tilde{Y} = B_Y \) and \(\tilde{Z} = B_Z \), we get

(3.4.5) \[\tilde{R}(B_X, B_Y)B_Z = \tilde{\nabla}_{B_X} \tilde{Y}_J B_Z - \tilde{\nabla}_{B_Y} \tilde{X}_J B_Z - \tilde{\nabla}_{[B_X, B_Y]} B_Z. \]

By virtue of (3.2.4), (3.4.5) and (3.2.8), we find

(3.4.6) \[\tilde{R}(B_X, B_Y)B_Z = B \left\{ R(X, Y)Z + m(X, Z)MY - m(Y, Z)MX \right\} \]

\[+[(\nabla_X m)(Y, Z) - (\nabla_Y m)(X, Z) + m[\eta^a(X)\varphi X - \eta^a(X)\varphi Y, Z] + a_m(m(Y, Z)b(X) - m(X, Z)b(Y))]N. \]

3.5. **Submanifolds of Co-Dimension 2**

Let \(M^{n+1} \) be an \((n+1)\)-dimensional differentiable manifold of differentiability class \(C^\infty \) and \(M^{n-1} \) be \((n-1)\)-dimensional manifold immersed in \(M^{n+1} \) by immersion \(\tau: M^{n-1} \to M^{n+1} \). We denote the
differentiability of the immersion τ by B, so that the vector field X in the tangent space of M^{n+1} corresponds to a vector field BX in that of M^{n+1}. Suppose that M^{n+1} is an almost r-paracontact Riemannian manifold with metric tensor \tilde{g}. If g be the induced metric on submanifold M^{n+1} then

$$\tilde{g} (B\phi X, BY) = g (\phi X, Y)$$

for any arbitrary vector fields X, Y in M^{n+1} [4]. If the manifolds M^{n+1} and M^{n-1} are both orientable such that

$$\tilde{g} (B\phi X, N_1) = \tilde{g} (B\phi X, N_2) = \tilde{g} (N_1, N_2) = 0$$

and

$$\tilde{g} (N_1, N_1) = \tilde{g} (N_2, N_2) = 1$$

for arbitrary vector field X in M^{n-1} [5].

We suppose that the enveloping manifold M^{n+1} admits a quarter symmetric semi-metric connection $\tilde{\nabla}$ given by

$$\tilde{\nabla}_X Y = \tilde{\nabla}_X Y - \tilde{\eta}^a (X) \phi Y + \tilde{g} (\phi \tilde{X}, \tilde{Y}) \tilde{\xi}_a$$

for arbitrary vector fields \tilde{X}, \tilde{Y} in M^{n+1}. $\tilde{\nabla}$ denotes the Levi–Civita connection with respect to the Riemannian metric \tilde{g} and $\tilde{\eta}^a$ is a 1-form.

Let us now put

\[(3.5.1) \quad \tilde{\xi}_a = B\xi_a + a_a N_1 + b_a N_2,\]

ξ_a being a vector field in the tangent space on M^{n-1}, and a_a, b_a are functions on M^{n-1} defined by

$$\eta^a (N_1) = a_a, \quad \eta^a (N_2) = b_a$$

Theorem 3.5.1. The connection induced on the submanifold M^{n-1} of co-dimension two of almost r-paracontact Riemannian manifold M^{n+1} with quarter symmetric semi-metric connection ∇ is also quarter symmetric semi-metric connection.
Proof. Let $\tilde{\nabla}$ be the connection induced on the submanifolds M^{n-1} from the connection ∇ on the enveloping manifold with respect to unit normals N_1 and N_2, then we have [1]

\[(3.5.2) \quad \tilde{\nabla}_{\alpha\beta}BY = B(\nabla_X Y) + h(X,Y)N_1 + k(X,Y)N_2\]

for arbitrary vector fields X, Y of M^{n-1}, where h and k are second fundamental tensors of M^{n-1}. Similarly, if ∇ be connection induced on M^{n-1} from the quarter symmetric semi-metric connection $\tilde{\nabla}$ on M^{n-1}, then

\[(3.5.3) \quad \tilde{\nabla}_{\alpha\beta}BY = B(\nabla_X Y) + m(X,Y)N_1 + n(X,Y)N_2,\]

m and n being tensor fields of type $(0, 2)$ of the submanifold M^{n-1}.

In view of equation (3.2.1), we have

\[\tilde{\nabla}_{\alpha\beta}BY = \tilde{\nabla}_{\alpha\beta}BY - \eta^a(X)B\phi Y + \tilde{g}(\phi BX, BY)\xi_a.\]

In view of (3.5.1), (3.5.2) and (3.5.3), we get

\[(3.5.4) \quad B(\nabla_X Y) + m(X,Y)N_1 + n(X,Y)N_2 = B(\tilde{\nabla}_X Y) + h(X,Y)N_1 + k(X,Y)N_2 - \eta^a(X)B\phi Y - \eta^a(X)a(Y)N_1 - \eta^a(X)b(Y)N_2 + g(\phi X,Y)\xi_a + g(\phi X,Y)a_\alpha N_1 + g(\phi X,Y)b_\alpha N_2,\]

where

\[a(X) = g(X,U), \quad b(X) = g(X,V).\]

Comparing tangential and normal vector fields to M^{n-1}, we obtain

\[(3.5.5) \quad \nabla_X Y = \tilde{\nabla}_X Y - \eta^a(X)\phi Y + g(\phi X,Y)\xi_a,\]

where a_α and b_α are chosen such that

\[(3.5.6) \quad (a) \quad m(X,Y) = h(X,Y) - \eta^a(X)a(Y) + a_\alpha g(\phi X,Y), \]

\[(b) \quad n(X,Y) = k(X,Y) - \eta^a(X)b(Y) + b_\alpha g(\phi X,Y).\]

Thus, we find
(3.5.7) \[\nabla_Y X - \nabla_X Y = \sum_{a} (\alpha^a(Y)\varphi X - \alpha^a(X)\varphi Y). \]

Hence the connection \(\nabla \) induced on \(M^{n-1} \) is quarter symmetric semi-metric connection.

3.6. Totally Geodesic and Totally Umbilical Submanifolds

Let \(X_1, X_2, X_3, \ldots, X_{n-1} \) be \((n-1) \) orthonormal vector fields on the submanifold \(M^{n-1} \). Then the function

\[
\frac{1}{2(n-1)} \sum_{i=1}^{n-1} \left\{ h(X_i, X_i) + k(X_i, X_i) \right\}
\]

is mean curvature of \(M^{n-1} \) with respect to the Riemannian connection \(\tilde{\nabla} \) and

\[
\frac{1}{2(n-1)} \sum_{i=1}^{n-1} \left\{ m(X_i, X_i) + n(X_i, X_i) \right\}
\]

is the mean curvature of \(M^{n-1} \) with respect to \(\nabla \) [5].

Now we have the following definitions:

Definition 3.6.1. If \(h \) and \(k \) vanish separately, the submanifold \(M^{n-1} \) is called totally geodesic with respect to the Riemannian connection \(\tilde{\nabla} \).

Definition 3.6.2. The submanifold \(M^{n-1} \) is called totally umbilical with respect to the connection \(\tilde{\nabla} \) if \(h \) and \(k \) are proportional to the metric tensor \(g \).

We call \(M^{n-1} \) is totally geodesic and totally umbilical with respect to the quarter symmetric semi-metric connection \(\nabla \) according as the functions \(m \) and \(n \) vanish separately and are proportional to metric tensor \(g \) respectively.
Theorem 3.6.1. The mean curvature of M^{n-1} with respect to the Riemannian connection $\hat{\nabla}$ coincides with that of M^{n-1} with respect to the connection ∇, it is necessary and sufficient that ξ_α is in the tangent space of M^{n-1}.

Proof. In view of (3.5.6) we have

$$m(X_i,X_i)+n(X_i,X_i)=h(X_i,X_i)+k(X_i,X_i)-\eta^a(X_i)a(X_i)-\eta^a(X_i)b(X_i)$$

$$+(a_a+b_a)g(\phi X_i,X_i).$$

Summing up for $i=1,2,3,...,(n-1)$ and dividing by $2(n-1)$, we get

$$\frac{1}{2(n-1)} \sum_{i=1}^{n-1} \left(m(X_i,X_i)+n(X_i,X_i) \right) = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} \left(h(X_i,X_i)+k(X_i,X_i) \right)$$

if and only if $a_a=b_a=0$ and $a=b=0$.

Hence in consequence of (3.2.2) it follows that $\vec{\xi}_\alpha = B\xi_\alpha$. Thus the vector field ξ_α is in the tangent space of M^{n-1}.

Thus our assertion is proved.

Theorem 3.6.2. The submanifold M^{n-1} is totally umbilical with respect to the Riemannian connection $\hat{\nabla}$ if and only if it is totally umbilical with respect to the quarter symmetric semi-metric connection ∇.

Proof: The proof follows easily from equations ((3.5.6) (a) and (b)).

3.7. Curvature Tensor and Weingarten Equations

For the Riemannian connection $\hat{\nabla}$, the Weingarten equations are given by [9]

$$\hat{\nabla}_{\hat{X}} N_1 = -BH N_1 + 1(X) N_2$$

and

$$\hat{\nabla}_{\hat{X}} N_2 = BH N_2 + 1(X) N_1$$
where \(H \) and \(K \) are tensor fields of type (1,1) such that

\[
(3.7.2) \quad \begin{align*}
(a) \quad g(HX, Y) &= h(X, Y), \\
(b) \quad g(KX, Y) &= K(X, Y).
\end{align*}
\]

Also, using (3.2.1) and (3.7.1) (a), we get

\[
\tilde{\nabla}_{\alpha} N_1 = -B(HX - a(X)\xi_{\alpha} + \eta^a(X)U) + (1(X) - \eta^a(X)K_2 + b_\alpha a(X))N_2 + a_\alpha a(X)N_1,
\]

which implies that

\[
(3.7.3) \quad \tilde{\nabla}_{\alpha} N_1 = -BM_1X + L_1(X)N_2 + L_2(X)N_1,
\]

where

\[
M_1X = HX - a(X)\xi_{\alpha} + \eta^a(X)U,
\]

\[
L_1(X) = 1(X) - \eta^a(X)K_2 + b_\alpha a(X) \quad \text{and} \quad L_2(X) = a_\alpha a(X).
\]

Similarly, from (3.2.1) and (3.7.1) (b), we find

\[
(3.7.4) \quad \tilde{\nabla}_{\alpha} N_2 = -B(HX - b(X)\xi_{\alpha} + \eta^a(X)V) + (1(X) - \eta^a(X)K_1 + a_\alpha b(X))N_2 + b_\alpha b(X)N_1,
\]

where

\[
\begin{align*}
\tilde{\nabla}_{\alpha} N_2 &= -BM_2X + Q_1(X)N_2 + Q_2(X)N_1, \\
M_2X &= HX - b(X)\xi_{\alpha} + \eta^a(X)V, \\
Q_1(X) &= 1(X) - \eta^a(X)K_1 + a_\alpha b(X)
\end{align*}
\]

and

\[
Q_2(X) = b_\alpha b(X).
\]

Equations (3.7.3) and (3.7.4) are Weingarten equations with respect to the quarter symmetric semi-metric connection \(\tilde{\nabla} \).
3.8. Riemannian Curvature Tensor for Quarter Symmetric Semi-Metric Connection

Let \(\tilde{R}(\tilde{X},\tilde{Y})\tilde{Z} \) be the Riemannian curvature tensor of the enveloping manifold \(M^{n+1} \) with respect to the quarter symmetric semi-metric connection \(\tilde{\nabla} \), then we have

\[
\tilde{R}(\tilde{X},\tilde{Y})\tilde{Z} = \tilde{\nabla}_\tilde{X}\tilde{\nabla}_\tilde{Y}\tilde{Z} - \tilde{\nabla}_\tilde{Y}\tilde{\nabla}_\tilde{X}\tilde{Z} - \tilde{\nabla}_{[\tilde{X},\tilde{Y}]}\tilde{Z}.
\]

Replacing \(\tilde{X} \) by \(BX \) and \(\tilde{Y} \) by \(BY \) and \(\tilde{Z} \) by \(BZ \), we get

\[
\tilde{R}(BX,BY)BZ = \tilde{\nabla}_{BX}\tilde{\nabla}_{BY}BZ - \tilde{\nabla}_{BY}\tilde{\nabla}_{BX}BZ - \tilde{\nabla}_{[BX,BY]}BZ.
\]

Using (3.7.3), (3.7.4) and (3.5.3) and (3.5.7), we obtain

\[
\tilde{R}(BX,BY)BZ = B[R(X,Y)Z - m(Y,Z)M_{1}X - n(Y,Z)M_{2}Y + m(X,Z)M_{1}Y
\]

\[
+ n(X,Z)M_{2}Y + \{(\tilde{\nabla}_\tilde{X}m)(Y,Z) - (\tilde{\nabla}_\tilde{Y}m)(X,Z)\}N_{1}
\]

\[
+ \{(\tilde{\nabla}_\tilde{X}n)(Y,Z) - (\tilde{\nabla}_\tilde{Y}n)(X,Z)\}N_{2} + m\eta^{\alpha}(Y)\phi X
\]

\[
- \eta^{\alpha}(X)\phi Y,Z)N_{1} + n\{\eta^{\alpha}(Y)\phi X - \eta^{\alpha}(X)\phi Y,Z\}N_{2}
\]

\[
+ m(Y,Z)L_{1}(X)N_{2} + m(Y,Z)L_{2}(X)N_{2} + n(Y,Z)Q_{1}(X)N_{1}
\]

\[
+ n(Y,Z)Q_{2}(X)N_{2} - m(X,Z)L_{1}(Y)N_{2} - m(X,Z)L_{2}(Y)N_{1}
\]

\[
- n(X,Z)Q_{1}(Y)N_{1} - n(X,Z)Q_{2}(Y)N_{2},
\]

where \(R(X,Y,Z) \) being the Riemannian curvature tensor of the submanifold with respect to the connection \(\nabla \).
References

5. CHEN, B.Y., (1973), ‘Geometry of submanifold’, Marcel Dekker, New York,

