CONTENTS

Preface

Chapter 1: Introduction
1.1: TCCs: Current Status and Challenges 1
1.2: Rationale for the Present Work 2
1.3: Aim and Outline of the Work 4
References 6

Chapter 2: Transparent Conducting Coatings: A Review 9
2.1: Introduction 9
2.2: TCCs: A Literature Review 9
2.3: ZnO: A Brief Review 11
2.4: ZnO: Growth Techniques 12
2.4.1: Chemical Vapor Deposition (CVD) 12
2.4.2: Vacuum Evaporation 12
2.4.3: Sputtering 13
2.4.4: Chemical Spray Pyrolysis 14
References 18

Chapter 3: Experimental - Deposition and Characterization Techniques 27
3.1: Introduction 27
3.2: Chemical Spray Pyrolysis (CSP) Process 27
3.3: Process Parameters Involved in Chemical Spray Pyrolysis 28
3.3.1: Substrate Temperature (T_s) 28
3.3.2: Precursor Solution Composition 28
3.3.3: Solution Flow Rate (S_f) 29
3.3.4: Spray Nozzle Diameter 29
3.3.5: Spray nozzle to substrate distance 29
3.3.6: Air Flow Rate (A_f) 29
3.3.7: Volume of the Solution Sprayed
3.3.8: Dopant Concentration

3.4: Experimental Setup
3.4.1: Spray Nozzle
3.4.2: Peristaltic Pump
3.4.3: Heater with Thermal Shield
3.4.4: Temperature Controlling Unit
3.4.5: Compressor
3.4.6: Exhaust System

3.5: Optimization of Process Parameters

3.6 Characterization of Thin Films
3.6.1: Low angle X-ray Diffraction
3.6.2: Scanning Electron Microscopy
3.6.3: Atomic Force Microscopy (AFM)
3.6.4: UV-Visible-Near -Infra-Red (UV-VIS-NIR) Spectroscopy
3.6.5: Resistivity by Four Probe Method
3.6.6: Figure of Merit for Transparent Conducting Applications
3.6.7: Room Temperature Hall Measurements

References

Chapter 4: Deposition and Characterization of ZnO and ZnO:Al Thin Film

4.1: Introduction
4.2: Experimental: Undoped ZnO Films
4.2.1: Thickness Independent Effect of Substrate Temperature (T_s)
4.2.2: Results and Discussion
4.2.2.A: Structural Properties
4.2.2.B: Surface Morphology
4.2.2.C: Optical Transmission and Absorption
4.2.2.D: Electrical Properties
4.2.3: Effect of Solution Flow Rate (S_f)
4.2.4: Results and Discussion

4.2.4.A: Structural Properties

4.2.4.B: Surface Morphology

4.2.4.C: Optical Transmission and Absorption

4.2.4.D: Electrical Properties

4.2.5: Effect of Molarity of Precursor Solution (S_c: M)

4.2.6: Results and Discussion

4.2.6.A: Structural Properties

4.2.6.B: Optoelectronic Properties

4.2.7: Effect of Air Flow Rate (A_f)

4.2.8: Effect of Volume of Precursor Solution (V)

4.3: Aluminium Doped ZnO Films

4.3.1: Experimental

4.3.2: Effect of Substrate Temperature

4.3.3: Results and Discussions

4.3.3.A: Structural Properties

4.3.3.B: Optical Transmission and Absorption

4.3.3.C: Electrical Properties

4.3.4: Effect of Doping Concentration

4.3.5: Results and Discussions

4.3.5.A: Structural Properties

4.3.5.B: Surface Morphology

4.3.5.C: Optical Transmission and Absorption

4.3.5.D: Electrical Properties

4.4: Conclusions

References

Chapter 5: Deposition and Characterization of ZnO:Cu and ZnO:Cd Thin Films

5.1: Introduction

5.2: Copper Doped ZnO Thin Films
5.3: Experimental ZnO:Cu Thin Films
5.3.1: Effect of Substrate Temperature 87
5.3.2: Results and Discussion 87
 5.3.2.A: Structural Properties 87
 5.3.2.B: Optical Transmission and Absorption 89
 5.3.2.C: Electrical Properties 91
5.3.3: Effect of Doping Concentration 94
5.3.4: Results and Discussion 94
 5.3.4.A: Structural Properties 94
 5.3.4.B: Surface Morphology 96
 5.3.4.C: Optical Transmission and Absorption 98
 5.3.4.D: Electrical Properties 100
5.4: Experimental ZnO:Cd Thin Films 103
5.4.1: Effect of Substrate Temperature 104
5.4.2: Results and Discussion 105
 5.4.2.A: Structural Properties 105
 5.4.2.B: Optical Transmission and Absorption 106
 5.4.2.C: Electrical Properties 108
5.4.3: Effect of Doping Concentration 111
5.4.4: Results and Discussion 111
 5.4.4.A: Structural Properties 111
 5.4.4.B: Surface Morphology 113
 5.4.4.C: Optical Transmission and Absorption 115
 5.4.4.D: Electrical Properties 117
5.5: Conclusions 120
References 122

Chapter 6: Conclusions 123
6.1: Structural Properties 123
6.2: Optical Properties 123
6.3: Electrical Properties 124