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CHAPTER 3 

FREE CONVECTION OF HEAT TRANSFER IN FLOW 

PAST A SEMI-INFINITE FLAT PLATE IN TRANSVERSE 

MAGNETIC FIELD WITH HEAT FLUX 

 

3.1 INTRODUCTION 

 MHD plays an important role in agriculture, petroleum industries, 

geophysics and in astrophysics. Important applications are found in the study 

of geological formations, in exploration and thermal recovery of oil, and in 

the assessment   of aquifers, geothermal reservoirs and underground 

nuclear waste storage sites. MHD flow has application in metrology, solar 

physics and in motion, of the earth’s core. Also, it has applications in the field 

of stellar and planetary magnetospheres, aeronautics, chemical engineering 

and electronics. In the field of power generation, MHD is receiving 

considerable attention due to the possibilities it offers for much higher 

thermal efficiencies in power plants.  

 The study of boundary layer heat flow and mass transfer over an 

inclined plate has generated much interest among various researchers in 

astrophysical, renewable energy systems and also hypersonic aerodynamic 

area for a number of decades. In recent years MHD flow problems have 

become a considerable interest in view of its significant applications in 

industrial manufacturing processes such as plasma studies, petroleum 

industries, Magneto Hydro Dynamics power generator cooling of nuclear 

reactors, boundary layer control in aerodynamics. The heat removal s trategies 
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in many engineering applications such as cooling of electronic components 

rely on natural convection heat transfer, due to its simplicity, minimum cost, 

low noise, smaller size and reliability. In most natural convection studies, the 

base fluid has a low thermal conductivity, which limits the heat transfer 

enhancement. However, the continuing miniaturization of electronic devices 

requires further heat transfer improvements from an energy saving viewpoint. 

Many authors have studied the effects of magnetic field on mixed, natural and 

forced convection heat and mass transfer problems. Indeed, MHD laminar 

boundary layer behavior over a stretching surface is a significant type of flow 

having considerable practical applications in chemical engineering, 

electrochemistry and polymer processing. This problem has also an important 

bearing on metallurgy where Magneto Hydro Dynamic (MHD) techniques 

have recently been used. Raptis & Singh (1983) studied the effects of uniform 

transverse magnetic field on the free convection flow of an electrically 

conducting fluid past an infinite vertical plate for the classes of impulsive and 

uniformly accelerated motion of the plate. 

 Investigation of Magneto Hydro Dynamic flow for an electrically 

conducting fluid past a heated surface has attracted the interest of many 

researchers in view of its important applications in many engineering 

problems such as plasma studies, petroleum industries, MHD power 

generators, cooling of nuclear reactors, the boundary layer control in 

aerodynamics, and crystal growth. This study has been largely concerned with 

the flow and heat transfer characteristics in various physical situations. 

However, few studies have been carried out to examine the effect of 

geometric complexity, such as irregular surfaces, on the convection heat 

transfer which is because complicated boundary conditions or external flow 

fields are difficult to deal with. However, the prediction of heat transfer from 

an irregular surface is of fundamental importance, and is encountered in 

several heat transfer devices, such as flat-plate solar collectors and flat-plate 
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condensers in refrigerators. Moreover, surfaces are sometimes intentionally 

roughened to enhance heat transfer for the presence of rough surfaces disturbs 

the flow and alters the heat transfer rate. However, all of the previous studies 

considered only the case of a flat plate or simple two-dimensional bodies, and 

few have been done on wavy surfaces. The study of boundary layer flow of 

heat and mass transfer over an inclined plate has generated much interest from 

astrophysical, renewable energy systems and also hypersonic aerodynamics 

researchers for a number of decades. Many authors have studied the effects of 

magnetic field on mixed, natural and forced convection heat and mass transfer 

problems. Indeed, MHD laminar boundary layer behavior over a stretching 

surface is a significant type of flow having considerable practical applications 

in chemical engineering, electrochemistry and polymer processing. 

 The study of flow and heat transfer in fluid past a porous surface 

has attracted considerable scientific attention based on applications,  chemical 

engineering, where boundary-layer control, transpiration cooling and gaseous 

diffusion are important. Equally important is the study of heat generation or 

absorption in moving fluids for problems involving chemical reactions and 

those concerned with dissociating fluids. Specifically, the effects of heat 

generation may alter the temperature distribution, consequently affecting the 

particle deposition rate in nuclear reactors, electronic chips and 

semiconductor wafers.  

 Combined buoyancy-generated heat and mass transfer due to 

temperature and concentration variations, in fluid- saturated porous media, 

have several important applications in variety of engineering processes 

including heat exchanger devices, petroleum reservoirs, chemical catalytic 

reactors, solar energy porous wafer collector systems, ceramic materials, 

migration of moisture through air contained in fibrous insulations and grain 

storage installations and the dispersion of chemical contaminants through 
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water-saturated soil, super convecting geothermic etc. Due to the fast growth 

of electronic technology, effective cooling of electronic equipment has 

become warranted and cooling of electronic equipment ranges from 

individual transistors to main frame computers and from energy suppliers to 

telephone switch boards and thermal diffusion effect has been utilized for 

isotopes separation in the mixture between gases with very light molecular 

weight (hydrogen and helium) and medium molecular weight. 

 The fluid mechanical properties of the penultimate product depend 

mainly on the cooling liquid used and the rate of stretching. Some polymer 

liquids like polyethylene oxide and poly-isobutylene solution in cetane, 

having better electromagnetic properties are normally used as a cooling liquid 

as their flow can be regulated by external magnetic fields in order to improve 

the quality of the final product. 

 Hossain et al (1999) studied the effects of viscous and Joule heating 

on the flow of viscous incompressible fluid past a semi-infinite plate in the 

presence of a uniform transverse magnetic field. The combined effects of 

forced and natural convection heat transfer in the presence of a transverse 

magnetic field from vertical surfaces are also studied by many researchers. 

Chen (2010) investigated the momentum, heat and mass transfer 

characteristics of MHD natural convection flow over a permeable, inclined 

surface with variable wall temperature and concentration, taking into 

consideration the effects of Ohmic heating and viscous dissipation.     

Seddeek (2002) analyzed the effect of heat radiation and variable viscosity 

and magnetic field in the case of unsteady flow. Abdelkhalek (2005) 

investigated the effects of mass transfer on steady two-dimensional laminar 

MHD mixed convection flow.  

 Lai & Kulacki (1990) used the series expansion method to 

investigate coupled heat and mass transfer in natural convection from a sphere 
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in a porous medium. Magneto Hydro Dynamics flows have applications in 

meteorology, solar physics, cosmic fluid dynamics, astrophysics, geophysics 

and in the motion of the earth’s core. In addition, from the technological point 

of view, MHD free convection flows have significant applications in the field 

of stellar and planetary magneto spheres, aeronautical plasma flows, chemical  

engineering and electronics. An excellent summary of applications is given by 

Huges & Young (1966) and Raptis (1986) studied mathematically the case of 

time varying two dimensional natural convective flow of an incompressible, 

electrically conducting fluid along an infinite vertical plate embedded in a 

porous medium. Helmy (1998) analyzed MHD unsteady free convection flow 

past a vertical porous plate embedded in a porous medium.            

Elbashbeshy (1997) studied heat and mass transfer along a vertical plate in the 

presence of a magnetic field.   

 In all the studies mentioned above, the heat due to viscous 

dissipation is neglected. Gebhart (1962) has shown the importance of viscous 

dissipation heat in free convection flow in the case of isothermal and constant 

heat flux at the plate. Soundalgekar (1972) analyzed viscous dissipative heat 

on the two-dimensional unsteady free convective flow past an infinite vertical 

porous plate when the temperature oscillates in time and there is constant 

suction at the plate. Cookey et al (2003) investigated the influence of viscous 

dissipation and radiation in unsteady MHD free convection flow past an 

infinite heated vertical plate in a porous medium with time dependent suction.  

 In this chapter the numerical solution is presented for free 

convection of heat transfer in flow past a semi-Infinite flat plate in a 

transverse magnetic field with heat flux. The governing equations are solved 

numerically using the Runge-Kutta Gill method with shooting technique.  
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3.2  ANALYSIS 

 A steady, two dimensional, incompressible flow of a viscous fluid 

on a continuous flat surface, issuing from a slot and moving with a constant 

velocity U0 in a fluid at rest, in the presence of a transverse magnetic field of 

strength B0  are considered. Let the x-axis be taken along the sheet in the 

direction of motion of the sheet and y-axis normal to it with velocity 

components u and v directed along their axes respectively. A uniform 

magnetic field is applied in the direction perpendicular to the plate. The fluid 

is assumed to be slightly conducting, and hence the magnetic Reynolds 

number is much less than unity and the induced magnetic field are negligible 

in comparison with the applied magnetic field. If  is the electrical 

conductivity of the fluid then the flow and heat transfer are given by the 

following equations: 

 Continuity equation 

 0
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 Momentum equation 
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 Energy equation  
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 The boundary conditions are  
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 Here U0 is the uniform velocity of the plate and qw is the heat flux 

per unit area. u,v are the velocity components in x, y directions respectively,  

the density of the fluid, 'k the permeability of the porous medium, T the 

temperature of the fluid,  the kinematic viscosity, =k/cp the thermal 

diffusivity, cp the specific heat at constant pressure, k the thermal conductivity 

of the fluid, B0 the magnetic induction. 

 The Equations (3.2) and (3.3) are coupled, parabolic and nonlinear 

partial differential equations and hence the analytical solution is not possible. 

Therefore the numerical technique is employed to obtain the required 

solution. Numerical computations are greatly facilitated by non-

dimensionalization of the equations. Proceeding with the analysis, we 

introduce the following similarity transformations and dimensionless 

variables which will convert the partial differential equation from two 

independent (x, y) variables to a system of coupled, non-linear ordinary 

differential equations in a single variable . i.e. coordinate normal to the 

plate. 

 In order to write the governing equations and the boundary 

conditions in dimensionless form the non-dimensional quantities are 

introduced by the stream function , defined by  

 u and v
y x

  
  
 

             (3.5) 
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which satisfies the equation of continuity.  Assuming f and  to be the 

functions of  only and making the following substitution, 
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the boundary layer Equations (3.1)  - (3.3)   become  
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 Equations (3.6) and (3.7) subject to the boundary conditions (3.8) 

were solved numerically using Runge-Kutta Gill method on a computer for 

different values of magnetic parameter for air using shooting method. The 

effects of variation of M and K on temperature profiles have been plotted. 

Numerical values of  ' ' 0f  and -  ' 0  for different values of M, K and Pr 

have been calculated and they are presented in a tabular form. The skin-

friction coefficient and Nusselt number are important physical parameters for 

this type of boundary layer flow. 

 Knowing the velocity field, the skin-friction coefficient at the plate 

can be obtained, which in non-dimensional form is given by 

    
1

22 Re " 0
f

C f


                                          (3.9) 

 Knowing the temperature field, the rate of heat transfer coefficient 

can be obtained, which in non-dimensional form, in terms of the Nusselt 

number, is given by 

    
1

'
2Re 0Nu 


                                         (3.10) 

3.3  SOLUTION OF THE PROBLEM 

 The set of coupled non-linear governing boundary layer  

Equations (3.6) and (3.7) together with the boundary conditions as given in 

Equation (3.8)   are solved numerically by using Runge-Kutta Gill method 

together with the shooting technique. First of all,  higher order non-linear 

differential Equations   (3.6)   to   (3.7)   are converted into simultaneous 

linear differential equations and they are further transformed into  the initial 

value problem by applying the shooting technique. The resultant initial value 

problem is solved by employing Runge-Kutta Gill method. The step size     
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 = 0.05 is used to obtain the numerical solution with five decimal place 

accuracy as the criterion of convergence. From the process of numerical 

computation, the skin-friction coefficient and the Nusselt number, which are 

respectively proportional to  ' ' 0f  and -  ' 0  are also sorted out and their 

numerical values are presented in a tabular form. Extensive calculations have 

been performed to obtain the flow and temperature fields for a wide range of 

parameters 0.5 M  2, 0.5  K  2 and 0.5  Pr  10.  

3.4 RESULTS 

 Table 3.1 shows numerical values of magnetic field parameter 

effects on  0''f  and -  0' . The profiles for velocity and temperature are 

shown in Figure 3.1-3.5 respectively with various values of the parameters. 

 

Table 3.1 Effect of magnetic field parameter on  ' ' 0f  and -  ' 0  

M K Pr  0''f   ' 0  

0.5 0.5 0.71 0.4438 1.6466 

1 0.5 0.71 1.0828 2.1758 

2 0.5 0.71 1.4733 2.8471 

0.5 1 0.71 1.0828 2.1729 

0.5 2 0.71 1.4734 2.8314 

0.5 0.5 1 0.4444 1.3312 

0.5 0.5 1.25 0.4444 1.1647 

0.5 0.5 5 0.4444 0.5370 

0.5 0.5 10 0.4444 0.3721 
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Figure 3.1 (a) Effect of Prandtl number Pr on non- dimensional velocity f 
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Figure 3.1(b) Effect of Prandtl number Pr on non-dimensional 

temperature  
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Figure 3.2 Effect of magnetic field parameter M on non- dimensional                   

velocity f ' 
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Figure 3.3 Effect of permeability parameter K on non-dimensional                           

velocity f ' 
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Figure 3.4 Effect of magnetic field parameter M on non-dimensional                 

temperature  
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Figure 3.5 Effect of permeability parameter K on non-dimensional                     

temperature  
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3.5  DISCUSSION 

 As a result of the numerical calculations, the dimensionless velocity 

and temperature distributions for the flow under consideration are obtained 

and their behavior has been discussed for variations in the governing 

parameters viz., magnetic field parameter M, permeability parameter K, 

Prandtl number Pr.   

 Figure 3.1 (a) and Figure 3.1 (b) illustrate the velocity and 

temperature profiles for different values of the Prandtl number Pr. From 

Figure 3.1 (a) and Figure 3.1 (b), it is observed that an increase in the Prandtl 

number results in a decrease of the thermal boundary layer thickness and in 

general lower average velocity within the boundary layer. The numerical 

results show that the effect of increasing values of Prandtl number results in a 

decreasing temperature. The reason is that smaller values of Pr are equivalent 

to increasing the thermal conductivities and therefore heat is able to diffuse 

away from the heated plate more rapidly than for higher values of Pr. Hence, 

in the case of smaller Prandtl numbers as the boundary layer is thicker and the 

rate of heat transfer is reduced. 

 Figure 3.2 presents the velocity profile for various values of 

magnetic field parameter M while all other parameters are kept at some fixed 

values. An increase in Magnetic field parameter M results in increase in 

velocity profile. It is observed that from Figure 3.3 the increase in the 

permeability parameter K increases the velocity profile. 

 The influence of magnetic field parameter M on the temperature is 

presented in Figure 3.4. It is observed that there is a decrease in the 

temperature as the magnetic field parameter M increases. This result 
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qualitatively agrees with the expectations, since the magnetic field exerts a 

retarding force on the free convection flow. Also, as M increases, the peak 

value of the temperature decreases rapidly near the porous plate and then 

decays smoothly. 

 Figure 3.5 presents typical temperature profiles in the boundary 

layer for various values of the permeability parameter K while all other 

parameters are kept at some fixed values.  An increase in K will therefore 

increase the resistance of the porous medium which will tend to decelerate the 

flow and reduce the velocity. The fluid temperature decreases as the 

permeability parameter K increases. Also, as K increases, the peak values of 

the temperature decrease rapidly near the plate and decreases smoothly. 

 The effects of various parameters on the skin friction coefficient  

and Nusselt number are shown in the Table 3.1. It is observed from the Table 

3.1 that as M and K increases, there is a fall in the skin-friction coefficient but 

there is an increase in Nusselt number. As the Prandtl number increases, there 

is no change in the skin-friction coefficient, but there is a decrease in the 

Nusselt number. 

3.6 CONCLUSION 

 Using the similarity transformation a set of ordinary differential 

equations has been derived from the conservation of mass and momentum in 

the boundary layer. These nonlinear, coupled differential equations have been 

solved physically by using valid boundary conditions and through Runge-

Kutta Gill method together with shooting technique. The conclusions of the 

study are as follows: 

 The velocity decreases with an increase in the magnetic 

parameter and permeability parameter. 
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 A positive increase in Prandtl number is shown to reduce the 

velocity and temperature in the flow. 

 The temperature decreases with an increase in magnetic 

parameter and permeability parameter. 

 An increase in M and K leads to fall in the skin-friction 

coefficient but there is an increase in Nusselt number 

 

 

  




	Chapter 3

