CONTENTS

CHAPTER – I \ INTRODUCTION \ 1-33

1.1 Introduction to thin films \ 1
1.2 Transition metal oxides \ 2
1.3 Electrochromic materials \ 3
1.4 Properties, structure and applications of Nb$_2$O$_5$ films: a review \ 5
 1.4.1 Review on the literatures of Nb$_2$O$_5$ films \ 7
 1.4.2 Electrochromism in Nb$_2$O$_5$ films \ 11
1.5 Properties, structure and applications of MoO$_3$ films: a review \ 13
 1.5.1 Review on the literatures of MoO$_3$ films \ 14
 1.5.2 Electrochromism in MoO$_3$ films \ 22
1.6 Nb$_2$O$_5$:MoO$_3$ films \ 23
 1.6.1 Literatures on Nb$_2$O$_5$:MoO$_3$ films \ 24
 1.6.2 Electrochromism in Nb$_2$O$_5$:MoO$_3$ films \ 25
1.7 Scope of the present work \ 26
 References \ 28

CHAPTER – II \ THIN FILM PREPARATION TECHNIQUES \ 34-46

2.1 Introduction \ 34
2.2 Evaporation method \ 34
2.3 Molecular beam epitaxy \ 34
2.4 Chemical vapor deposition \ 35
2.5 Electroplating \ 35
2.6 Sputtering \ 35
 2.6.1 Physical understanding of sputtering \ 36
 2.6.2 DC diode sputtering \ 37
 2.6.3 RF sputtering \ 37
 2.6.4 Magnetron sputtering \ 38
2.7 Sputtering equipment \ 39
 2.7.1 Vacuum pumps \ 40
2.8 Film preparation \ 42
 2.8.1 Preparation of sputtering targets \ 42
 2.8.2 Substrate selection and cleaning \ 43
 2.8.3 Nb$_2$O$_5$ and Nb$_2$O$_5$:MoO$_3$ film preparation \ 44
2.9 Conclusion \ 45
 References \ 46
CHAPTER – V OPTICAL AND VIBRATIONAL STUDIES ON
Nb₂O₅ AND Nb₂O₅:MoO₃ THIN FILMS 81-98

5.1 Introduction 81
5.2 Optical transmittance and energy band gap calculation 82
 5.2.1 Nb₂O₅ thin film 82
 5.2.2 Nb₂O₅:MoO₃ (95:5) thin film 85
 5.2.3 Nb₂O₅:MoO₃ (90:10) thin film 87
 5.2.4 Nb₂O₅:MoO₃ (85:15) thin film 88
5.3 Photoluminescence studies on Nb₂O₅ and Nb₂O₅:MoO₃ thin films 89
 5.3.1 Nb₂O₅ thin film 90
 5.3.2 Nb₂O₅:MoO₃ (95:5, 90:10, 85:15) films 90
5.4 Vibrational property of Nb₂O₅ and Nb₂O₅:MoO₃ thin films 92
 5.4.1 Nb₂O₅ thin film 92
 5.4.2 Nb₂O₅:MoO₃ (95:5) thin film 93
 5.4.3 Nb₂O₅:MoO₃ (90:10) thin film 94
 5.4.4 Nb₂O₅:MoO₃ (85:15) thin film 95
5.5 Conclusions 95
References 97

CHAPTER – VI ELECTROCHROMIC PROPERTIES OF
Nb₂O₅ AND Nb₂O₅:MoO₃ FILMS 99-121

6.1 Introduction 99
 6.1.1 Cyclic voltammetry technique for electrochromic study 101
 6.1.2 Chronocoulometry technique 105
6.2 Electrochromic studies on Nb₂O₅ and Nb₂O₅:MoO₃ thin films 106
6.3 Results of electrochromic studies on Nb₂O₅ films 107
 6.3.1 Intercalation and deintercalation of Li⁺ ion 108
 6.3.2 Intercalation and deintercalation of H⁺ ion 111
6.4 Results of electrochromic studies on Nb₂O₅:MoO₃ films 113
 6.4.1 Intercalation and deintercalation of Li⁺ and H⁺ ions 114
6.5 Conclusions 118
References 119

CHAPTER – VII SUMMARY, CONCLUSION AND SUGGESTIONS
FOR FUTURE WORK 122-125

7.1 Summary and conclusion 122
7.2 Suggestion for future work 125