CHAPTER II

REVIEW OF LITERATURE

The preceding chapter explains the concept of marketing for non-profit organizations. This chapter reviews literature related to the present study. The discussion in this chapter is divided in two sections. The first section deals with researches in marketing for non-profit organizations. The second section reports main findings of researches regarding use of improved input and technology by agriculturists. These researches include research work of individuals as well as organizations involved in transferring knowledge in agriculture and improved input.

Marketing for non-profit Organizations

Philip Kotler and Sydney Levy were the first to introduce the concept of marketing for non-profit organizations. The first document (Kotler and Levy: Broadening the concept of Marketing) which appeared in January 1969 was relatively general, but it developed the idea that there is a marketing function in non-profit organization. July 1971 issue of Journal of Marketing (America) was specially devoted to this concept and it carried quality articles on marketing applications in non-profit organizations. A detailed discussion of this concept is found in Kotler's Marketing. For non-profit organization, R.D. Bussell in working paper
entitled, "How can Research Contribute to Improved Marketing in non-business organizations" suggests descriptive research in the field. Shapiro (Marketing in non-profit organizations) explores the possibilities of using marketing techniques in non-profit organizations and develops systematic approach for this Journal of Marketing. Research (America) contains several articles devoted to this concept and its application in various fields.

As the concept is originated in U.S.A., when 'marketing' as a separate discipline is well developed, most researches in the field under study have been done and relate to U.S. situations. In India, marketing for profit sector is still in the developing stage, talk of its application to non-profit organization is far ahead. Therefore, not much, in fact, there is practically no literature that deals with marketing in non-profit organizations in India. Some researchers have tried to study some aspects of marketing of social causes. For example, research is available in Marketing of Contraceptives. One or two studies are available in the social marketing. Dr. L.R. Bhandari's study is worth mentioning in this context. Amte in his study, "Donation Behaviour" has attempted to analyze and cause marketing Donars. Thus, field of marketing has remained unexplored. No study like the one in question has been undertaken so far.
Research work pertaining to Diffusion of Technology

Individual scientists, Agricultural Universities and Agriculture Department have conducted some studies to find out the extent of use of improved technology offered by them to the cultivators. Some of the related research findings are cited below.

Apodaca (1952) determined the "farmers participation in and knowledge about the extension programmes and their attitudes towards the extension service. The study revealed that most of these, who have participated in the programmes held favourable attitudes towards work and indicated a desire to continue the programmes". It means that the farmers, who participated in the extension programmes arranged by the various agencies, were desirous of adopting new innovations.

The National Extension Service Community project report (1959) revealed that good progress cannot be achieved without an effective and coordinated supply line. In this context, cultivators emphasized that the supply line needs reorganization so as to serve all their major needs for increased agricultural production viz., supply of improved seeds, improved agricultural implements, fertilizers, insecticides and pesticides for agricultural production. The supply line should meet the following requirements.
(1) Catering to the major needs of cultivators of all sections.

(2) Involvement of Gram Panchayat and village co-operative society fully so that programme of agricultural extension may assure strong institutional base.

The degree of agricultural innovation diffusion varies from one social system to the another depending upon the extent to which opinion leaders differ in their communication and innovative behaviour (Romans, 1961). It means that the degree of diffusion of agricultural innovation differs from person to person engaged in the extension activities undertaken by the given organization. The systematic efforts need to be attended by the extension workers for transferring the improved know-how in the field of agriculture and allied sciences to the farming community.

According to Rogers (1962), the rate of technological diffusion is considerably influenced when early adopters of agricultural innovations influenced late adopters. It means, though the innovation adopted by the few farmers initially the information about the innovation automatically flows through the social structure of the inter-personal communication channels. The awareness of the innovation and use of it is gradually bound to be increased within the society.

Rogers (1966) opined that "mass media are most important in creating awareness of new ideas but it is personal influence from adoption leaders that convinces most people to make
decision and take action. Adoption leaders make greater use of impersonal and more technically accurate source of information. They read from magazines and have more direct contact with agricultural scientists, country agents and agricultural teachers than does the average farmers."

It means that the mass media is most important source for creating the awareness of improved know-how to the farming community but the source of adoption leaders is more important because they adopt new innovation by which they convince other people to make decision and to take action for use of new innovation. The adoption farmers have more direct contact with the agricultural scientists, extension workers.

Naik (1969) said in the All India Agricultural Conference at Bangalore that "Agricultural Universities are serving as foundation of new knowledge earned through purposeful problem solving research and have become main centres for dissemination of useful knowledge to the farming community. Indeed, some of the best training for farmers is offered by the Agricultural Universities. The scientists working in the Agricultural Universities are providing the number of package of practices in successfully applying the scientific knowledge to the solution of practical problems. Further, those who are competent to earn new knowledge, helped to launch educational programmes. Adoption of teaching materials, teaching methods and curricula to meet the demands of ever-developing agriculture and industry assume the progress."
Vidhyarthty (1970) stated in the National Food Congress held at New Delhi that "it hardly needs emphasis that in order to implement a new strategy of agricultural production successfully, it is essential to provide effective administrative and coordination arrangements, machinery for input supplies, transport, marketing, production oriented extension training and farmers' education. While these elements are needed for production, the user of new technology i.e. farmer is obviously the most important. He said, our progress in agriculture will depend first and foremost on the development of our farmers".

Gurav (1971) studied the socio-economic uplift of schedule tribes in Maharashtra and reported about Warli tribe that they are now established as cultivators. They also showed sign of advancement by adopting new agricultural techniques. He concluded that the educational activities in the area, dissemination of timely technological information through group discussions and adult education, timely support of inputs and credits have helped the use of recommended technologies in the area. Some of Warli families are situated in the Thane and Raigad districts. They are engaged in farming.

The major task of accelerating innovations diffusion depends upon the effectiveness of the flow of information through mass media and inter-personal communication channels to the farmers. Effective and efficient transmission of information about new agricultural practices holds key to the
agricultural production problems. Programmes of agricultural production can be more effectively planned and implemented through an appropriate communication strategy based on an advanced knowledge of inter-personal communication structures of village social system.

Swaminathan (1975) has explained the concept of "whole village Operational Research Project" as one involving operational problems in the transfer of technology which should be tackled from the social, administrative, organizational and technical angles concurrently rather than consecutively. It is for this purpose that the working group which formulated the Fifth Plan proposals of the Indian Council of Agricultural Research (I.C.A.R.) suggested the initiation of whole village watershed operational research projects. These projects which have been taken up by our Agricultural Universities and research institutes in collaboration with the extension agencies, banks and other credit institutions, the local administration and above all, the farmers of the area are intended to introduce new land water use plans for a well defined area which can help to maximize the economic benefits from the ecological strength of the area and minimise the ecological risks and instability in crop production."

Singh (1976) reported that "with the wider use of high yielding varieties, agriculture has ceased to be a source of subsistence alone, the new agriculture has attended the status of a modern business." It was observed that the farming
community would increase the production in agriculture by using the high yielding varieties and however the agriculture is most important source for uplifting the economic condition of the farming community. Those who are using the new techniques in the field of agriculture, they could achieve the improved economic status. They could increase their standard of living. After independence, the farming community who are economically sound due to increased production in agriculture holds status in society and participated important role in policies and business related to the field of agriculture and allied sciences.

Sawant (1978) in his research study, stated that high inter-institutional coordination was associated with the quantitative aspects of performance like enrolment of small farmers, percentage of farmers' finance, increase in per acre yields. It is, therefore, essential to have high level of coordination among the various agencies involved in task. An arrangement of inter-institutional coordination is established within the activities of the various Government Departments and Agricultural Universities for transfer of improved goods and services of the Universities to the farming community.

The KKV (1979-80) had undertaken a study to know the socio-economic characteristics of the farmers in command area, the extent of utilization of irrigation potential and to explore causes of under utilization of irrigation potential
developed in the Raigad district. Most of the beneficiaries were found to be illiterate and were above 60 years of age. Majority of them were having medium, nucleus type of family. A large proportion of them owned their land less than two hectares with an average of seven fragments and at an average distance of 2.5 km from their residence. The study indicated no association of age, education and annual income of the farmers with the utilization of irrigation potential. The magnitude of non-utilization of irrigation potential was 71.00 per cent. The major causes of under utilization of irrigation potential were observed to be small and fragmented land holdings situated at different locations posing management problems, non-availability of water as and when required, fear of failure due to past experience, menace of stray cattle, low market rates resulting in less profit and no exact intimation of let-in water from the canal.

Another study was undertaken by the EKV in (1979) to know the characteristics of recipients of the planting material, to know the survival percentage, to study the causes of mortality and to obtain suggestions from the beneficiaries and the extension agencies for reducing the losses if any. The study was conducted in three talukas of Ratnagiri district. Data were collected from extension staff of respective Panchayat Samitis and the farmers who had obtained the planting material (mango, coconut - T x D and black pepper) produced and distributed by the Vidyapeeth.
It was noticed that a large number of farmers was of middle age group of 31 to 45 years. Eightyseven per cent had attained some level of formal schooling. Most of the families were of joint type with average size of land owned as 2.82 hectares and with average annual income of Rs. 4,982/-.

The recipient farmers on an average purchased 16 mango grafts, 6 coconut seedlings and 15 pepper seedlings. There was a negligible mortality of planting material at distribution agency level. The distribution agency took 15 days to complete the distribution programme, however no special arrangements were made for temporary storage of planting material. On receipt of the material, 37, 36 and 10 per cent farmers planted it immediately within 2 to 4 days and between 5 to 15 days, respectively, whereas, remaining had planted it after 15 days. Of the planting material supplied, 22.00 per cent mortality was noticed in respect of mango, 23.00 per cent in respect of black pepper and 10.00 per cent in respect of coconut. Nearly, 47.00 per cent farmers had stated that pest and diseases was the major cause of mortality of planting material, whereas, other causes stated were striking of bed rock, water shortage, etc. Major suggestions of beneficiaries on various aspects of planting material were that they need training in planting of horticultural crops, planting material be healthy and vigorous, insecticides and fertilizers be supplied along with planting material and defective planting material be replaced free of cost.
Every year, the Konkan Krishi Vidyapeeth distributes horticultural planting materials to the farmers through the Zilla Parishads. A study (1980-81) was therefore, undertaken to know the characteristics of recipients of the planting material to know the survival percentages, to study the causes of mortality of planting material and to obtain suggestions from the planters and the extension agencies for reducing the losses. The study was carried out in three districts of the region with particular reference to planting material of mango (Alphonso), coconut (T x D) and black pepper (Panniyur-a). The results of the study revealed that young energetic group of farmers and the educated ones participated in planting programme in a majority. There were 41.61 per cent of respondents with less than one hectare of land, while 34.78 per cent of respondents were having 1.01 to 2.00 ha. of land. The average annual income from all the sources of the family was Rs. 6,498/-. There was discrepancy in the figures mentioned by Zilla Parishads, Panchayat Samities and farmers regarding material received by them. Of the 161 respondents only 151 had received planting material. Out of 151 respondents, 91.39 per cent stated that they received the planting material in good condition. After receipt of the planting material, 39.73 per cent of respondents planted the material immediately, while 37.73 per cent had planted it within 2 to 3 days. Majority of the respondents had made necessary preliminary arrangements for planting. As regards mortality of planting material, it was observed that in
Ratnagiri, Raigad and Thane districts, it was 8.23, 46.60 and 34.78 per cent in case of mango, 11.56, 47.15 and 11.90 per cent in case of coconut and 31.62, 55.05 and 33.40 per cent in case of black pepper respectively. The main reasons for the mortality of planting material attributed by the farmers were stray cattle menace (23.18 %) followed by pests and diseases (14.57 %). The detailed knowledge regarding cultivation be given and insecticides and pesticides be supplied along with the planting material, were the major suggestions of the farmers. The extension officers were interviewed about the planting material. All these respondents stated that the different types of planting material received was in good condition. The suggestions of the extension agencies regarding supply of planting material were:

(A) Required quantity of planting material should be supplied by the Vidyapeeth.

(B) Arrangements to supply planting material at other than office hours and on holidays should be made during the season.

(C) Appropriate resting period should be given to the grafts after detaching.

The study (1980-81) was conducted in Extension Development Block of the College of Agriculture with a view to study the extent of adoption, problems in adoption and suggestions
regarding the selected innovations released by the Konkan Krishi Vidyapeeth. The innovations selected for the study were high yielding varieties of rice and the Vaibhav sickle. Of the total rice land of the respondents 52.65 per cent was under different improved varieties other than Konkan Krishi Vidyapeeth varieties and 12.65 per cent under the varieties released by the Konkan Krishi Vidyapeeth. Majority of the respondents (97.70%) were aware of one or more high yielding varieties recommended by the Department of Agriculture. Of these varieties, 79.88 per cent were found using these varieties, 25.29 per cent of respondents were using the varieties released by the Vidyapeeth. Of the varieties released by the Vidyapeeth, it was found that variety Ratnagiri-24 was known by most of the farmers (63.79%) followed by Karjat 14-7 (49.42%). The variety Karjat 14-7 was found to be adopted by 20.68 per cent farmers followed by variety Ratnagiri-24. Further, out of 174 respondents, 48.85 per cent were aware of innovation 'Vaibhav sickle'. More than one-tenth (10.92%) had purchased the Vaibhav sickle. The Gramsevaks and Agricultural Assistants of the University were the main source of information for farmers regarding the innovation. Of the respondents who were aware, 22.35 per cent had purchased sickle, while 69.41 per cent were willing to purchase the sickle. The main reasons putforth by farmers for not purchasing the Vaibhav sickle were that those are not supplied by the Panchayat Samities.
and not available in open market. The sickles were purchased by the farmers mainly from Panchayat Samities (89.47%) on subsidy ranging from 50 to 100 per cent. Of the respondents who were aware, 43.53 per cent had actually used it. According to them the Vaibhav sickle was found to be very useful since it harvests faster than local sickle, facilitates close cutting to the soil surface and sharpening is not required.

The Department of Agriculture, Maharashtra State, Pune (1982-83) had undertaken the monitoring survey during kharif season. It was noticed that the average percentage of non-contact farmers knowing the V.E.W. was 51.3 per cent. The maximum and minimum district level proportion being 70.6 per cent (Jalgaon district) and 30.6 per cent (Raigad district). As a matter of fact, all the contact farmers must know V.E.Ws. It is necessary for the management to make efforts to ensure that V.E.W. establish intimate contact at least with the contact farmers. This will consequently lead to high proportion of non-contact farmers knowing the V.E.W. The overall percentage of contact farmers visited by V.E.W. at least twice in 4 weeks period prior to survey was 79.9 per cent in the State. Performance in Akola district was the best i.e. 97.7 per cent whereas 13.6 per cent of contact farmers in the 9 districts were not visited even once during the 4 week period. Performance of Satara district viz. 23.3 per cent in this respect was the poorest. The Department of Agriculture, Maharashtra State, Pune (1982-83) conducted the monitoring
survey of Training and Visit Project implemented in Maharashtra State. The study revealed that 85.6 per cent contact farmers (CF) in Group-I (i.e. districts of first phase) and 89.9 per cent CF in Group-II (other districts) knew the VEW. The percentage of non-contact (NCF) farmers knowing the VEW was 46.6 per cent in Group-I and 44.9 per cent in Group-II. The percentage of farmers knowing VEW especially in respect of Group I districts needs to be improved. More publicity may, therefore, be given to the scheme.

The percentage of CF visited two or more times during 4 week period was 70.9 per cent in Group-I and 72.6 per cent in Group-II. The percentage of CF not visited at all was 17.00 per cent for Group-I and 12.1 per cent in Group-II. These percentages are rather high and attempts may be made to bring them down. It was found that 66.5 per cent contact farmers in Group-I and 65.9 per cent in Group-II had discussed the extension information with other farmers. These percentages need to be increased for better implementation of the scheme. Only 39.4 per cent NCF in Group-I and 32.8 per cent in Group-II knew the CF in their groups. These percentages cannot be said to be satisfactory. They need to be improved.

Among CF there is a predominance of farmers having large holdings as compared to NCF. Similarly, the percentage of CF having more than half of their land irrigated was also much higher than that of the NCF. Although, only 4.5 per cent CF in Group-I districts had their relatives also CF
the corresponding proportion of in Group-IX was rather high i.e. 17.2 per cent. From these observations, there appears to be need for taking another look at the selection of contact farmers in some districts.

The reasons reported by maximum number of farmers for non-adoption of various practices was "it involves heavy expenditure". Other reasons were "necessary inputs were not available" and "the information was received late" in that order. These reasons were reported both for rabi jowar and wheat crops. It seems necessary to convince farmers that although use of improved practices involves more expenditure, it will fetch much more additional income. There is also need to make available supplies of inputs in time. A large majority of CF (70%) for rabi jowar and 72% for wheat crops) had received information regarding improved practices from the extension agency. The proportion of NCF getting information of improved practices from extension agency, was however, much lower. If more publicity is given to the scheme and also if some modifications are made in CF wherever necessary, the scheme will be more fruitful.

It was noticed that 72 per cent CF and 22 per cent NCF were visited 2 or more times by the VEW. Comparison of these figures with rabi 1982-83 survey shows that the position is almost stated 13 per cent CF were not visited at all during the reference period. It is necessary to improve the frequency of visits especially to the CF. Further, 73 per cent CF were
visited by the V&W in the field. The corresponding percentage for the rabi season was 70 per cent and thus there is an improvement in respect of this item.

The Department of Agriculture, Maharashtra State, Pune (1983-84) had undertaken the monitoring survey for Rabi. It was found that 26 per cent of contact farmers (CF) and 32 per cent of non-contact farmers (NCF) in all the districts had not used recommended seeds for rabi jowar crop. These respondents are not large. However, analysis of reasons for non-utilization of recommended varieties of seed by farmers will be very useful to the management for future. The respondents put forth the reasons for non-utilization of recommended varieties of seeds such as recommended varieties are costly (CF - 15% and NCF - 18%), not available (CF - 61% and NCF - 38%), not efficient (CF - 4% and NCF - 19%), late information received (CF - 10% and NCF - 6%), these are only for domestic use (CF - 6% and NCF - 14%) and other reasons (CF - 4% and NCF - 5%).

According to the data collected in monitoring survey for Rabi season of 1983-84, 54 per cent CF and 71 per cent NCF in all the districts did not use the fertilizers for Rabi jowar. The percentage of the contact and non-contact farmers regarding the non-use of fertilizers with their reasons were as 'fertilizers are costly' (CF - 65% and NCF - 67%), not available (CF - 6% and NCF - 8%), not utility (CF - 5% and
It is clear from the earlier discussion that innovations have been made in the field of agriculture. Organizations involved in developing new technology in agriculture have attempted to promote the same among user public. Some of them have also researched the effectiveness of efforts in spreading improved technology. All these researches lead to an important conclusion that user public have developed favourable attitude towards new techniques, but system for diffusion is not satisfactory. In other words, marketing efforts are needed to spread the use of improved technology and input.