Table of Contents

Particulars Page No.
List of Figures i-iv
List of Tables v
List of Plates vi
Abbreviations vii-viii

1. Chapter I: Review of Literature of Cyanobacteria Metal Interactions: Physiological and molecular responses against metal stress

1.1 Cyanobacteria 1-15
 1.1.1 Habitats 1-15
 1.1.2 Ecology of cyanobacteria
 1.1.3 Cyanobacterial physiology and morphology
 1.1.4 Classification of cyanobacteria
 1.1.5 Biomass and its Use
 1.1.6 Sources of oxidative stress in cyanobacteria
 1.1.6.1 Endogenous Source
 1.1.6.2 Exogenous Sources
 1.1.7 Metal requirements by the cyanobacteria

1.1.2 Heavy metals contamination 15-18
 1.1.2.1 Contamination of aquatic ecosystems
 1.1.2.2 Contamination of terrestrial ecosystems

1.1.3 Metal Uptake and Interactions 19-40
 1.1.3.1 Metal and Oxidative stress
 1.1.3.2 Mechanisms of Metal Toxicity in Cyanobacteria
 1.1.3.3 Molecular Targets of Oxidative Damage
 1.1.3.3.1 Lipids
 1.1.3.3.2 Proteins
 1.1.3.3.3 DNA

1.1.4 Defense Mechanisms of the Cell against Oxidative Stress 40-56
1.1.4.1 Enzymatic Antioxidants
1.1.4.2 Non Enzymatic Antioxidants
1.1.4.3 Metal Chelation by stress proteins

1.1.5 Stepwise exposure of cyanobacteria to increasing concentration of metal and the concept of adaptation

1.2 Hypothesis
1.3 Significance of Work

2. **Chapter 2: Survival, Growth and photosynthetic responses of cyanobacterium *Nostoc muscorum*.**

2.1 Introduction
2.2 Methodology
 2.2.1 Chemicals
 2.2.2 Glasswares and Equipments Used
 2.2.3 Experimental Organisms
 2.2.4 Characteristics of Selected Cyanobacterial Strains.
 2.2.5 Growth conditions
 2.2.6 Sterilization of medium
 2.2.7 Isolation and purification
 2.2.8 Incubation and maintenance of cultures
 2.2.9 Metal treatment
 2.2.10 Growth measurement
 2.2.11 Percent survival under the metal stress
 2.2.12 Photosynthetic pigment extraction and estimation
 2.2.13 Estimation of protein
 2.2.14 Metal uptake
 2.2.15 Statistical analysis

2.3 Results
 2.3.1 Survival of cyanobacteria under metal stress
 2.3.2 Growth
 2.3.3 Photosynthetic pigment
 2.3.4 Metal accumulation
3. **Chapter 3** Studies to understand the possible protective mechanisms of *N. muscorum* exposed to selected metals

3.1. Introduction 105-108

3.2. Methodology 109-117

3.2.1 Absorption Spectra

3.2.2 Photosynthetic electron transport activity in spheroplast

3.2.3 Free radical generation under metal stress

3.2.4.1 Superoxide

3.2.4.2 Peroxide

3.2.4 Lipid peroxidation

3.2.5 Antioxidant enzyme activity

3.2.5.1 Superoxide Dismutase

3.2.5.3 Peroxidase

3.2.5.4 Catalase

3.2.6 Non enzymatic antioxidants

3.2.6.1 Polyphenol

3.2.6.2 Proline

3.2.6.3 Ascorbate

3.2.7 PAL activity

3.3 Results 118-141

3.4 Discussions 142-151

3.5 Conclusions 151

4. **Chapter 4** Evaluation of metal-induced molecular modulations in protein, DNA and lipid in the survival of *N. muscorum*

4.1 Introduction 152-155

4.2 Methodology 156-165

4.2.1 Analysis of protein by SDS-PAGE

4.2.2 DNA extraction and analysis

4.2.3 Lipid Profiling

4.3 Results 166-180
5. Chapter 5 Role of Proline in modulation of Aluminum-induced stress responsive proteins: Relationship between Adaptation and Proline accumulation

5.1 Introduction 192-195
5.2 Methodology 196-197
5.3 Results 199-206

5.3.1 Ameliorative effect of exogenous proline on chlorophyll a, total peroxides and MDA content of N. muscorum exposed to Cd
5.3.2 Al acclimation of N. muscorum
5.3.3 Al adaptation mediated cross protection to Cd stress

5.4 Discussions 207-211
5.5 Conclusions 210

6. References 211-305
7. Appendix 306-307
8. List of publications 308