CONTENTS

CHAPTER I – Introduction 1

Objectives

CHAPTER II- Review of Literature 4

2.1.1. Cellulosic polymers

2.1.2. Cellulosic fabrics

2.1.3. Cotton

2.1.4. Components in raw cotton

2.1.5. Morphology and Chemistry of Cotton

2.1.6. Repeating cellulose units in cotton

2.1.7. Crystallinity of Cellulose

2.1.8. Chemical properties of cotton

2.2. Cyclodextrins

2.2.1. Types of cyclodextrins

2.2.2. β-Cyclodextrin

2.2.3. β -Cyclodextrin derivatives

2.2.4. Applications of β-cyclodextrins

2.3. Polyvinylpyrrolidone

2.3.1. Physical and Chemical properties

2.3.2. Applications of PVP

2.4. Ionic liquids

2.4.1. Properties of Ionic liquids

2.4.2. Room temperature Ionic liquids (RTILs)
2.4.3. Preparation of Ionic liquids

2.4.4. Applications of Ionic liquids

2.5. Dyes

2.5.1. Classification of dyes

2.6. Natural extracts

2.6.1. Tulasi

2.6.2: Parijataka

2.7. Composite

2.7.1. Nanocomposites

2.7.2. Bio-nanocomposites

2.7.3. Applications of composites

2.8. References

CHAPTER III- Experimental Details

3.1. Materials and chemicals used

3.2. Synthesis of ZnO nanoparticles

3.3. Synthesis of cellulose/PVP composite fabric

3.4. Synthesis of cellulose/PVP/ ZnO nanocomposite fabric

3.5. Membrane synthesis - Cellulose/PVP

3.6. Synthesis of sulfated β-cyclodextrin

3.7. Synthesis of cellulose/sb-cd composite fabric

3.9. Membrane synthesis - Cellulose/sb-cd

3.10. Extraction of plant extracts

3.11. Dyeing of cellulose/PVP composite fabrics with reactive dyes

3.12. Treatment of cellulose composite fabrics with natural extracts
3.13. Characterization of synthesized cellulose composites and ZnO nanoparticles

3.13.1. FTIR studies
3.13.2. UV-Visible analysis
3.13.3. X-ray diffraction analysis
3.13.4. Dynamic light scattering analysis
3.13.5. Particle size distribution analysis
3.13.6. SEM analysis
3.13.7. TEM analysis
3.13.8. TG/DTA analysis

3.14.2. Wash fastness measurement
3.14.3. Light fastness measurement
3.14.4. TDS and pH measurements
3.14.5. Antibacterial test

3.15. References

CHAPTER – IV Synthesis of cellulose/PVP/ZnO composite fabric for improved dyeability and antibacterial activity

4.1. Introduction

4.2. Results and Discussion

4.2.1. XRD pattern of ZnO nanoparticles
4.2.2. Particle size analyzer studies
4.2.3. FTIR analysis of unmodified and modified cotton fabric
4.2.4. Surface morphology of unmodified and modified cotton fabric
4.2.5. Effect of dyeability for unmodified and modified fabric
4.2.6. Fastness properties of unmodified and modified cotton

4.2.7. Effect of TDS analysis

4.2.8. Antibacterial test

4.3. Conclusion

4.4. References

4.5. Legends

4.5.1. Tables

4.5.2. Figures

CHAPTER V- Synthesis of PVP/cellulose composite fabric and its improved antibacterial activity with Ocimum tenuiflorum and Nyctanthes arbor-tristis extracts

5.1. Introduction

5.2. Results and Discussion

5.2.1. FTIR studies of natural extracts and treated composite fabrics

5.2.2. SEM and EDX images of modified and unmodified fabric

5.2.3. Effect of extract treatment on unmodified and modified fabric

5.2.4. Antibacterial test

5.3. Conclusion

5.4. References

5.5. Legends

5.5.1. Tables

5.5.2. Figures
CHAPTER VI- Synthesis of cellulose/PVP composite membrane using [BMIM]+BF₄⁻ and [BMIM]+PF₆⁻ Ionic liquids

6.1. Introduction
6.2. Results and Discussion
 6.2.1. FTIR analysis of cellulose, PVP and composite membranes
 6.2.2. Strength analysis of Cellulose/PVP composite membranes
 6.2.3. XRD pattern of cellulose, PVP and composite membranes
 6.2.4. Surface morphology of cellulose, PVP and composite membranes
 6.2.5. TG/DTA analysis of composite membranes
 6.2.6. Antibacterial test
6.3. Conclusion
6.4. References
6.5. Legends
 6.5.1. Tables
 6.5.2. Figures

CHAPTER VII- Synthesis of cellulose/sulfated β-cyclodextrin/ZnO composite fabric and its antibacterial activity

7.1. Introduction
7.2. Results and Discussion
 7.2.1. XRD pattern of ZnO nanoparticles
 7.2.2. UV-Visible and DLS analysis of ZnO nanoparticles
 7.2.3. TEM and PSA analysis of ZnO nanoparticles
 7.2.4. FTIR analysis of β-cd, sb-cd, cellulose and composite cellulosic fabrics
 7.2.5. Surface morphology of functionalized cotton fabrics
 7.2.6. Antibacterial test

8.1. Introduction

8.2. Results and Discussion

8.2.1. FTIR analysis of Ocimum tenuiflorum and Nyctanthes arbor-tristis extract treated cotton

8.2.2. Surface morphology of cotton and sb-cd/cellulose cotton fabric

8.2.3. Effect of modification on extract treatments

8.2.4. Antibacterial activity test

8.3. Conclusion

8.4. References

8.5. Legends

8.5.1. Tables

8.5.2. Figures

CHAPTER-IX- Synthesis of cellulose / sb-cd composite membrane using [BMIM]\(^+\) BF\(_4^-\) and [BMIM]\(^+\)PF\(_6^-\) Ionic liquids

9.1. Introduction

9.2. Results and Discussion

9.2.1. Strength analysis of cellulose/sb-cd composite membranes
9.2.2. XRD pattern of cellulose, sb-cd and composite membranes
9.2.3. FTIR analysis of cellulose, sb-cd and composite membranes
9.2.4. Surface morphology of cellulose/sb-cd composite membranes
9.2.5. TG/DTA analysis of composite membranes
9.2.6. Antibacterial test
9.3. Conclusion
9.4. References
9.5. Legends
9.5.1. Figures
9.5.2. Table

CHAPTER-X

10. Summary and conclusions

LIST OF PUBLICATIONS IN NATIONAL / INTERNATIONAL JOURNALS