TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>01</td>
</tr>
<tr>
<td>2. REVIEW OF LITERATURE</td>
<td></td>
</tr>
<tr>
<td>2.1 Phytoplasma</td>
<td>05</td>
</tr>
<tr>
<td>2.1.1. Transmission, symptoms and host-pathogen interaction in infected plants</td>
<td>05</td>
</tr>
<tr>
<td>2.2 Morphology and ultra structure.</td>
<td>06</td>
</tr>
<tr>
<td>2.3 Taxonomic classification and genus ‘Candidatus Phytoplasma’</td>
<td>06</td>
</tr>
<tr>
<td>2.4 Distribution of phytoplasmas.</td>
<td>08</td>
</tr>
<tr>
<td>2.5 Phytoplasma genome and its composition.</td>
<td>18</td>
</tr>
<tr>
<td>2.6 Phytoplasma detection, enrichment and genome analysis.</td>
<td>21</td>
</tr>
<tr>
<td>2.7 Ca. Phytoplasma oryzae (16Sr XI) group.</td>
<td>24</td>
</tr>
<tr>
<td>2.7.1. Sugarcane yellows diseases in South East Asia and economic importance.</td>
<td>25</td>
</tr>
<tr>
<td>2.8 Phytoplasma genome sequencing and comparative genomics.</td>
<td>26</td>
</tr>
<tr>
<td>2.9 Biochemical studies of host plants infected by mycoplasmas.</td>
<td>31</td>
</tr>
<tr>
<td>2.10 Molecular mechanisms involved in the interaction between pathogenic phytoplasmas and their plant hosts.</td>
<td>35</td>
</tr>
<tr>
<td>2.11 Ribotyping and differential gene expression.</td>
<td>43</td>
</tr>
<tr>
<td>3. MATERIALS AND METHODS</td>
<td></td>
</tr>
<tr>
<td>3.1 Plant material and source of phytoplasma.</td>
<td>46</td>
</tr>
<tr>
<td>3.2 Plant DNA isolation.</td>
<td>46</td>
</tr>
<tr>
<td>3.3 Plant RNA isolation.</td>
<td>47</td>
</tr>
<tr>
<td>3.4 DNA extraction from agarose gels.</td>
<td>48</td>
</tr>
<tr>
<td>3.5 PCR amplified product purification.</td>
<td>49</td>
</tr>
<tr>
<td>3.6 Purification of DNA fragments from enzymatic reactions.</td>
<td>50</td>
</tr>
<tr>
<td>3.7 Differential filtration and phytoplasma enrichment.</td>
<td>50</td>
</tr>
<tr>
<td>3.8 Scanning electron microscopy.</td>
<td>51</td>
</tr>
<tr>
<td>3.9 Genomic DNA isolation and PCR analysis.</td>
<td>51</td>
</tr>
<tr>
<td>3.10 Cloning and sequence analysis of PCR products.</td>
<td>52</td>
</tr>
<tr>
<td>3.11 Restriction digestion analysis of 16S rDNA amplicons.</td>
<td>52</td>
</tr>
</tbody>
</table>
3.12 Detection thresholds of phytoplasma.
3.13 PCR-select DNA/cDNA subtraction Protocols.
 3.13.1 RNA preparation and handling.
 3.13.2 First-strand cDNA synthesis.
 3.13.3 cDNA amplification.
 3.13.4 Rsa I digestion of DNA or ds cDNA samples.
 3.13.5 Adaptor preparation and ligation.
 3.13.6 First hybridization of tester samples.
 3.13.7 Second hybridization.
 3.13.8 PCR amplification.
 3.13.8.1 Primary PCR amplification.
 3.13.8.2 Secondary PCR amplification.
3.14 Ligation of PCR products in pGEM-T vector.
3.15 Preparation of competent E. coli (DH5α) cells.
3.16 Bacterial transformation of competent cells.
3.17 Bacterial plasmid DNA isolation by alkaline lysis.
3.18 Agarose gel electrophoresis.
3.19 Dot-blot hybridization and differential screening.
3.20 Primer designing and PCR amplifications.
3.21 AP-PCR profiling, scoring and data analysis.
3.22 Amplification of full-length cDNAs using RACE-PCR.
3.23 Sequencing and sequence analysis.
3.24 Semi-quantitative RT-PCR analysis.

4. RESULTS AND DISCUSSION
4.1 To enrich the SCGS phytoplasma DNA using differential filtration approach.
 4.1.1 Enrichment and isolation of phytoplasma particles.
 4.1.2 PCR analysis for phytoplasmal detection.
 4.1.3 Cloning, sequencing and RFLP analysis of PCR products.
 4.1.4 Detection thresholds of phytoplasma in enriched fractions.
4.2 Study the co-association of SCGS and SCMV in phytoplasma disease of sugarcane.
4.2.1 Phytoplasma and virus detection by PCR.

4.2.2 Detection analysis for leaf samples of variety CoC 671.

4.2.3 Detection analysis for leaf samples of variety Co 86032.

4.2.4 Cloning and sequence analysis of PCR products.

4.2.5 Co-association of SCGS and SCSMV.

4.3 To identify and isolate SCGS phytoplasma specific fragments by riboprofiling and genomic-SSH of healthy and infected sugarcane plants and development of PCR based diagnostic system for early detection of SCGS phytoplasma.

4.3.1 Identification and isolation of SCGS phytoplasma specific fragments by ribotyping.

4.3.1.1 Phytoplasmal detection and source of phytoplasma.

4.3.1.2 RNA isolation and first strand cDNA synthesis.

4.3.1.3 AP-PCR profiling, scoring and data analysis.

4.3.1.4 Scoring of sugarcane Up and Down Regulated transcripts.

4.3.1.5 Scoring of phytoplasmal Transcript-Derived Fragments (TDFs).

4.3.1.6 Cloning and dot blot confirmation of AP-PCR phytoplasmal TDFs.

4.3.1.7 Sequencing and sequence analysis of dot blot confirmed phytoplasmal TDFs.

4.3.1.8 Anchor-PCR confirmation of phytoplasmal fragments for their origin of amplification.

4.3.1.9 Development and efficiency checking of SCGS specific PCR detection system.

4.3.2 Identification and isolation SCGS phytoplasma genes by genomic SSH of healthy and infected sugarcane plants.

4.3.2.1 Plant material and phytoplasma infection detection.

4.3.2.2 Construction of enriched SCGS phytoplasma library.

4.3.2.3 Screening for SCGS phytoplasma DNA by differential dot-blot hybridisation.

4.3.2.4 Sequencing and sequence analysis.

4.3.2.5 Local nucleotide BLAST analysis of redundant SCGS sequences.

4.3.2.6 Orphan fragment specific PCR analysis.
4.3.2.7 Identification of SCGS phytoplasma sequences by protein blast searches

4.3.2.8 Functional categorization of SCGS phytoplasma predicted CDs.
 4.3.2.8.1 Cellular processes.
 4.3.2.8.2 Energy, carbohydrate and lipid metabolism.
 4.3.2.8.3 DNA metabolism.
 4.3.2.8.4 Translation, protein synthesis and amino acid metabolism.
 4.3.2.8.5 Transport and binding proteins.
 4.3.2.8.6 Mobile and extrachromosomal element functions.
 4.3.2.8.7 Virulence factors.
 4.3.2.8.8 Others.
 4.3.2.8.9 Hypothetical proteins.

4.3.2.9 Homology of Sugarcane clones to phytoplasma genes.

4.4 To identify and isolate the sugarcane genes expressed in response to SCGS phytoplasma and elucidate their pathways.
 4.4.1 SSH cDNA library construction.
 4.4.2 Functional classification and analysis of sugarcane gene differentially expressed.
 4.4.2.1 Genes involved in energy and metabolism.
 4.4.2.2 Genes involved in transcriptional regulation.
 4.4.2.3 Genes involved in signal transduction.
 4.4.2.4 Genes involved in cell rescue, defence and virulence.
 4.4.3 Isolation and sequence analysis of SoMYB18 from diseased sugarcane plant.
 4.4.3.1 Cloning of SoMYB18 cDNA using RACE-PCR.
 4.4.3.2 Sequence analysis of conserved regions in the SoMYB18.
 4.4.3.3 Phylogenetic relationships and gene family structure.
 4.4.3.4. Expression analysis of SoMYB18 in diseased plants.

5. SUMMARY AND CONCLUSIONS

6. BIBLIOGRAPHY