CHAPTER IV
ANALYSIS AND INTERPRETATION OF THE DATA

4.1 Introduction:

Everyone experiences and expresses emotions differently making emotional intelligence important for managing relationships. An individual should be able to tackle & understand his emotions of if he is able to do it then that individual is emotional intelligence.

Emotional intelligence also reflection individual’s ability to identify the emotions of other even when these emotions are expressed subtly

Increasing emotional intelligence and empathy begins with an honest assessment of your reactions to your emotions and those of other. look for areas that need impeachment such as stereotyping , rushing to judgment , overlooking the feelings of others becoming when situations do not work out the way you unlined or blanking others for thing that are not their faculty . Take steps to improve these areas A number of books and online resources are available to help you increase your emotional intelligence.

1.2 Descriptive Analysis

1. Measures of corgral tendancy as
 a) Mean
 b) Median
 c) mode

2. Measurment of variability
 As standeird deviation, skewness kurtosis and graphausoul analysis

Hypothetical Analysis of data

Researcher has used t-test for shanin differaness beteen two variance
1. **t-test**

\[
\text{t} = \frac{M_1 - M_2}{\sqrt{\frac{SD_1^2}{N_1} + \frac{SD_2^2}{N_2}}}
\]

- M_1: Mean of 1st group
- M_2: Mean of 2nd group
- SD_1: Standard deviation of 1st group
- SD_2: Standard deviation of 2nd group
- N_1: Number of 1st group (sample size)
- N_2: Number of 2nd group (sample size)

2. **Calculation of correlation (r-test)** The researcher has used the r-test (correlation) for examine co-relation between two variance.

\[
r = \frac{N \sum XY - (\sum X)(\sum Y)}{\sqrt{N \sum X^2 - (\sum X)^2} \sqrt{N \sum Y^2 - (\sum Y)^2}}
\]

- N: Number of observations
- X: Variable X
- Y: Variable Y
as

\[
\text{Exy} = \sum x \quad \text{Sum of } x \text{ scores}
\]

\[
\text{EXY}^2 = \sum x \quad \text{Sum of } y \text{ scores}
\]

\[
\text{EY}^2 = \sum y \quad \text{Sum of squared } x \text{ score}
\]

\[
\text{EX} = \sum x \quad \text{Sum of squared } Y \text{ score}
\]

\[
\text{EY} = \sum y \quad \text{Sum of product of paired}
\]

\[
N = \text{Numbers of paired scores}
\]

(Sample)

There are graphical analysis and both score as Emotional intelligence and Teaching effectiveness as are below.

Table No- 4.1

Distribution of frequency and cumulative frequency of scores of Intelligence

<table>
<thead>
<tr>
<th>Class interval</th>
<th>Numbers</th>
<th>Frequency</th>
<th>Stair line</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-120</td>
<td>02</td>
<td>02</td>
<td>3.33</td>
</tr>
<tr>
<td>11-140</td>
<td>08</td>
<td>08</td>
<td>8.66</td>
</tr>
<tr>
<td>141-170</td>
<td>16</td>
<td>16</td>
<td>15.33</td>
</tr>
<tr>
<td>171-200</td>
<td>22</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>201-230</td>
<td>52</td>
<td>52</td>
<td>49.66</td>
</tr>
<tr>
<td>231-260</td>
<td>75</td>
<td>75</td>
<td>69.33</td>
</tr>
<tr>
<td>261-290</td>
<td>81</td>
<td>81</td>
<td>57</td>
</tr>
<tr>
<td>291-320</td>
<td>15</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td></td>
<td>271</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The frequency distribution of emotional intelligence on above shat[]
Graph 4.1

The score of emotional intelligence frequency distribution of polygon

Class interval

Mean

- frequency
- stair line polygon
Table No- 4.2
frequency distribution of emotional intelligence of teachers Mean median made standard
deviation sleekness and kurtosis

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>Median</th>
<th>Mode</th>
<th>standard deviation</th>
<th>skewers</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number</td>
<td>244.81</td>
<td>223</td>
<td>245</td>
<td>44.84</td>
<td>-0.2742</td>
<td>-0.1828</td>
</tr>
</tbody>
</table>

Table No- 4.3
Frquency distribution of teacher effectiveness

<table>
<thead>
<tr>
<th>Class interval</th>
<th>Total Number</th>
<th>Frequency</th>
<th>Stair line</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-60</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>61-80</td>
<td>35</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>81-100</td>
<td>81</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>101-120</td>
<td>91</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>121-140</td>
<td>32</td>
<td>48.31</td>
<td></td>
</tr>
<tr>
<td>141-160</td>
<td>22</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>271</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frquency distribution of teacher effectiveness on above sheet
Graph 4.2

Score of Teaching effectiveness frequency distribution of polygon

class interval
Table No- 4.4

Table of central secondary and variance of teaching effectives of D.T.Ed teacher

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>Median</th>
<th>Mode</th>
<th>standard deviation</th>
<th>skewers</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nos</td>
<td>107.35</td>
<td>106</td>
<td>100</td>
<td>23.31</td>
<td>-0.1787</td>
<td>-0.3254</td>
</tr>
</tbody>
</table>

Hypothesis:

Is a statement which has to be accepted not permanently but for a short pan of time it can be implied as a base for searching new truth, a hypothesis is only an exemption got from a theory which is a guide for investigation any past theory which is not know it can be called a guessed or in fences of existing fact. Then also can be weed to solve the purpose to explain the fact which is already known exist in the area of research useful in the search for new truth. A Hypothesis is a state of looking forward it is a proposition of test to determine its validity it may be concoct or incorrect it is tentative supposition . It may be a tentative generalization of remains in its most elementary stage. The hypothesis may be any hunch, gen imaginative, idea which become the basis for further investigation.

Science employs hypotheses in guiding the thinking process. When our experience tells us that a given phenomenon follows regularly upon the appearance of certain other phenomena, we conclude that the former is connected with the latter by some sort of relationship and we form an hypothesis concerning this relationship.

In hypothesis research investigation guess the friable result of the experiments.
A Hypothesis is an assumption or proposition whose tenability is to be tested on the basis of the compatibility of its implications with empirical evidence and with previous knowledge.

A Hypothesis is there for a shrewd intelligent guan, a supposition, Provisional statement as to the existence of some facts, relationship relative to some phenomenon which serves the facts in the given area of research.

THE USE OF HYPOTHESIS IN DIFFERENT TYPES OF RESEARCH:

The use of hypothesis will vary somewhat with the type of research undertaken and the purposes to be served. In historical research the purpose may be either to produce a faithful record of the past or to extend the experiences with phenomena in the present to the past in order to make the view of the phenomena more complete. For the latter purpose, hypothetical thinking serves the conventional purposes of limiting the research, sensitizing the observer and colligating facts. When the purpose is only to produce a faithful record of the past, little or no use is made of hypothetical thinking except in establishing the record itself.

In normative-survey research the investigator may or may not employ the hypothetical type of thinking, depending upon his purpose. If he desires merely to know the status of certain phenomena, little or no use may be made of hypothesis. If however the investigator is working with some problem for which the solution depends upon study of the status of various diversified phenomena and their relationships, e.g. sex differences in the achievement of high school pupils, hypothetical thinking may play an important role. However, hypothesis does not appear to assume the significant role in normative-survey research that it does in either experimental or complex causal research. In these types of research, hypothetical thinking is best developed and plays an important part. Experiment is not the main source of scientific principles. It is the means of testing a deduction. Again, measurement is not the source of laws, it permits only the expression of a previously conceived law in mathematical terms.
DIFFERENT FORMS OF HYPOTHESIS:

The hypothesis can be stated in a number of forms which are:

1. Null form. It states that no significant difference exists between the variables concerned. For example, there is no significant difference in the instructional standards of single shift and double shift schools. The null form is preferred by most of the experienced research personnel. This form of statement more readily defines the mathematical model to be utilized in the statistical test of the hypothesis. The no-difference statement assumes that the two groups will be tested and found to be equal.

2. Prediction form. It is chosen because it allows the research worker to state principles which he actually expects to emerge from the experiment. This type of hypothesis is more useful in action research studies.

3. Declarative form. It generally states a relationship between the variables concerned. For example, we can state that there will be a significant difference in the instructional standards of boys and girls schools.

4. Question form. The above mentioned hypothesis in question form may read—“Is there a significant difference in the instructional standards of boys and girls schools?”

DIFFICULTIES IN THE FORMULATION OF HYPOTHESIS:

In stage of formulating a good hypothesis a beginner may suffer a number of difficulties:

1) When there is lack of knowledge & clanship of area in which the investigator choose to work.

2) Lack of ability to make use to the theoretical framework logically.

3) If the investigator is not familiar or acquaintance with the available data analysis resulting in failure the properties may change.

4) Vagueness of the statement means if a research reveals ethics that will make student a more ethical adult.
TESTING THE HYPOTHESIS:

The proof of the worth of a hypothesis lies in its ability to meet the test of its validity. After formulating a hypothesis, it is necessary to (1) deduce its consequences, (2) select or develop tools that will determine whether these consequences actually occur, and (3) use the tools thereby collecting facts that will either confirm or disconfirm the hypothesis.

There are two fairly important means of testing hypothesis: (1) the study of hypothesis for logical consistency; and (2) the study of hypothesis for agreement with fact.

The study of hypothesis for logical consistency is a phase of thinking. It consists of checking the logical character of the reasoning by which the consequences of hypotheses are deduced for verification. In the second place, the study of hypothesis for logical consistency involves checking it for agreement with the already known laws of thinking and it must not conflict with the highest and simplest laws of good thinking and it must not disagree with those principles of science which are considered valid beyond reasonable doubt. The suggested inferences are tested in thought, for logical coherence, before they are tested in action.

In the study of hypothesis for agreement with fact, one argues that if the hypothesis is true, certain facts, conditions or relationships will be found, then one looks to see if these conditions are present. After testing the hypothesis by applying it to already known facts, it may have to be tested by a new appeal to experience. In this new appeal the data are collected, recorded and manipulated according to the conventions of science. If the data already available are adequate, no new appeal to experience will be necessary.

A hypothesis is never proved, it is merely sustained or rejected. If it fails to meet the test of its validity, it must be modified or rejected. A hypothesis can be useful even if it is partly incorrect. The negative instances which occur require only further clarification and refinement of the hypothesis rather than its outright rejection.
The confirmation of a hypothesis is always tentative and relative subject to later revision and even rejection as further evidence appears or as more adequate hypotheses are introduced. Hypothesis is more tentative and less fully developed than theory, is more subject to modification and to rejection. A hypothesis is only theory in the making. When a hypothesis is sustained by logical and empirical tests, it provides the bases for generalizations or conclusions. As further confirmation and clarification of the conditions under which the hypothesis holds, accumulate, a generalization may become a law or principle. Sound theories are reached only after many hypothesis have been tried our and discarded or modified to harmonize with established facts.

Evaluation or Co-relation:

<table>
<thead>
<tr>
<th>Co-relation</th>
<th>Value of co-relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20 below</td>
<td>Poor co-relation</td>
</tr>
<tr>
<td>0.21 to .40</td>
<td>shortly co-relation</td>
</tr>
<tr>
<td>0.41 to 0.60</td>
<td>Moderate co-relation</td>
</tr>
<tr>
<td>0.61 to 0.80</td>
<td>High co-relation</td>
</tr>
<tr>
<td>0.81 to 1.00</td>
<td>Exllant co-relation</td>
</tr>
</tbody>
</table>
4.3 Analysis of data Interpretation:

Hypothesis I :- There is no significant differences between male and female teachers in their emotional intelligence.

The t- test is apply for shown difference between male and female teachers

Table - 4.5
Differences mean score of emotional intelligence of male and female teacher in their emotional intelligence

<table>
<thead>
<tr>
<th>Group</th>
<th>Numbers</th>
<th>Degree of foredoom</th>
<th>Mean</th>
<th>Sd</th>
<th>T values</th>
<th>table value</th>
<th>Significance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Teachers</td>
<td>109</td>
<td>269</td>
<td>226.63</td>
<td>42.94</td>
<td>0.11</td>
<td>2.59</td>
<td>1.97</td>
</tr>
<tr>
<td>Female Teachers</td>
<td>162</td>
<td></td>
<td>223.58</td>
<td>46.16</td>
<td>0.11</td>
<td>2.59</td>
<td>1.97</td>
</tr>
</tbody>
</table>

The t- value in table is on 0.05 level – 1.97 and 0.01 level is 2.59. The obtain t value is 0.11 ingrate. it is not significant differences 0.05 level in male and female teacher intelligence scores. The null by prosthesis is accepted.

Conclusion : These is no significant differences between male and female teachers in their emotional intelligence score in teachers Education college at 0.05 level figure.
Graph 4.3
Mean Differences between male and female teacher in their education intelligence.
HYPOTHESIS – 2

These is no significant difference between rural and urban teachers score in their emotional intelligence

The apply t- test for shown difference between rural and urban graph teachers in their emotional intelligence

<table>
<thead>
<tr>
<th>Group</th>
<th>Numbers</th>
<th>Degree of Freedom</th>
<th>Mean</th>
<th>sd</th>
<th>t-values</th>
<th>Table Value 0.01</th>
<th>Table Value 0.05</th>
<th>Significant level 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural Teacher</td>
<td>160</td>
<td>269</td>
<td>191.91</td>
<td>51.53</td>
<td>0.05</td>
<td>2.59</td>
<td>1.97</td>
<td>Not Significant</td>
</tr>
<tr>
<td>Urban Teacher</td>
<td>111</td>
<td></td>
<td>189.84</td>
<td>52.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table value of t on 0.01 level is 2.59 and .05 level is 1.97. The obtain t value is 0.05 therefore there is not significant differences between rural and urban teachers in their emotional score at 0.05 level the rule hypothesis is accepted on .05 level.

Conclusion : There is no significant differences between rural and urban teachers
Graph 4.4

Mean score differences between urban and rural in their emotional intelligence

![Graph showing mean score differences between urban and rural teachers in emotional intelligence. The graph indicates a higher mean score for rural teachers compared to urban teachers.]
HYPOTHESIS – 3

There is no significant differences between aided and unaided teachers in their emotional intelligences.

The t-test apply for shown differences between aided and unaided teachers in their emotional intelligence.

<table>
<thead>
<tr>
<th>Group</th>
<th>No.</th>
<th>Degree of freedom</th>
<th>Mean</th>
<th>sd</th>
<th>t-value</th>
<th>table value 0.01</th>
<th>table value 0.05</th>
<th>Significant level 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>aided</td>
<td>65</td>
<td>269</td>
<td>268.61</td>
<td>54.23</td>
<td>0.81</td>
<td>2.59</td>
<td>1.97</td>
<td>Not significant</td>
</tr>
<tr>
<td>unaided</td>
<td>206</td>
<td>206.19</td>
<td>54.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The t-value on 0.01 level is 2.59 and 0.05 level is 1.97. The obtain t-value is 0.81. These is no significant differences between aided and unaided teachers in their emotional intelligence in teacher education college at .05 level the rule hypothesis is accepted.

Conclusion: There is no significant differences between aided and unaided teachers in their emotional intelligence score.
Graph 4.5

Graph of mean differences between aided and unaided school in their emotional intelligence.
HYPOTHESIS – 4

There is no significant differences between male and female teacher teaching effectiveness in teachers education college.

The apply the t-test for examine the differences

Table 4.8
Mean score differences between male and female teacher in the teaching effectiveness

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of teacher</th>
<th>Degree of freedom</th>
<th>Mean</th>
<th>sd</th>
<th>t-value</th>
<th>Table value</th>
<th>Significant level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>109</td>
<td>269</td>
<td>105.81</td>
<td>21.8</td>
<td>0.32</td>
<td>2.59</td>
<td>Not significant</td>
</tr>
<tr>
<td>Female</td>
<td>162</td>
<td></td>
<td>108.39</td>
<td>24.2</td>
<td></td>
<td>1.97</td>
<td></td>
</tr>
</tbody>
</table>

The t-value in table as .05 level is 1.97 and 0.01 level is 2.59 the obtained t value 0.32 there is no significant difference between male and female teacher in their teaching effectiveness at .05 level is teacher education college. The rule hypothesis is accepted.
Conclusion: There is no significant differences between male and female teachers in their teaching effectiveness at .05 level.

Graph 4.6
Mean score differences between male and female teacher in their teaching effectiveness
HYPOTHESIS – 5

There is no significant differences between rural and urban teachers in their teaching effectiveness

The apply t-test for differences in their teaching effectiveness.

Table 4.9
Mean score differences between rural and urban are in their teaching effectiveness.

<table>
<thead>
<tr>
<th>Group</th>
<th>No of Teacher</th>
<th>dt</th>
<th>Mean</th>
<th>sd</th>
<th>T value</th>
<th>Table value</th>
<th>Significant level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>160</td>
<td>269</td>
<td>105.81</td>
<td>19.9</td>
<td>2.59</td>
<td>0.01 0.05</td>
<td>Significant</td>
</tr>
<tr>
<td>Urban</td>
<td>111</td>
<td></td>
<td>122.29</td>
<td>13.9</td>
<td>2.59</td>
<td>1.9 7</td>
<td>differences</td>
</tr>
</tbody>
</table>

The table value of t is 1.97 at .05 level and 2.59 at 0.01 level. The obtain t- value is 4.02 at 0.1 level. There is significant differences between rural and urban teachers in their teaching effectiveness. The score of urban teachers is high in their teaching effectiveness. The rule hypothesis is rejected.

Conclusion:- there is no significant differences between, rural and urban Teachers in their teaching effectiveness in teacher education college.
Mean score differences between urban and rural area in the teaching effectiveness.
HYPOTHESIS 6

There is no significant differences between rural and urban teacher in their teaching effectiveness.

The apply t- test for examine differences between rural and urban teachers in their teaching effectiveness in unaided college

Table 4.10

Mean score differences between unaided college in their teaching effectiveness

<table>
<thead>
<tr>
<th>Group</th>
<th>No of Teacher</th>
<th>Degree of freedom</th>
<th>Mean</th>
<th>Sd</th>
<th>t-value</th>
<th>Table value 0.01</th>
<th>Table value 0.05</th>
<th>Significant level 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural Teacher</td>
<td>65</td>
<td>269</td>
<td>121.23</td>
<td>19.92</td>
<td>3.58</td>
<td>2.59</td>
<td>1.97</td>
<td>Significant differences</td>
</tr>
<tr>
<td>Urban Teacher</td>
<td>206</td>
<td></td>
<td>108.49</td>
<td>19.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table value of t is 2.59 at 0.01 level and 1.97 at 0.05 level. The obtained t value is 3.58 there is significant differences between rural and urban teachers in their teaching effectiveness at 0.01 level. The high score has fained in rural teacher anout teaching effectiveness. The rule hypothesis is rejected.

Conclusion :- There is significant differences between urban and rural teachers in unaided college in their teaching effectiveness at .01 level
HYPOTHESIS 7

There is no significant co-relation between teachers' emotional intelligence and teaching effectiveness in teacher education college. The apply superman a formula for examine the correlation its.

<table>
<thead>
<tr>
<th>Ex</th>
<th>Ex^2</th>
<th>Ey</th>
<th>Ey^2</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>237.3</td>
<td>3898521</td>
<td>11534</td>
<td>2678420</td>
<td>107</td>
</tr>
</tbody>
</table>

X = Teachers' emotional intelligence.

Y = Teachers teaching effectiveness.

Co-relation (r) = 0.05 level

Degree of freedom = 107

r value at

0.05 level 0.195

0.01 level 0.254

Obtain r = 0.05
Table 4.11

Co-relation between emotional intelligence and teaching effectiveness

<table>
<thead>
<tr>
<th>No.</th>
<th>Degree of freedom</th>
<th>Table r value</th>
<th>Obtain r value</th>
<th>Significant level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.05</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>107</td>
<td>0.195</td>
<td>0.294</td>
<td>0.005</td>
</tr>
</tbody>
</table>

‘r’ TEST - EXPLANATION

r value is 0.254 at 0.01 level and 0.195 at 0.05 level. The obtained r value 0.005. Therefore there is not significant co-relation between teachers emotional intelligence and teaching effectiveness at 0.05 level. The rule hypothesis is 0.05 accepted.

Conclusion:– There is no significant relation between teachers emotional intelligence and teaching effectiveness in teacher education colleges.
HYPOTHESIS 8

There is no significant co-relation between teachers emotional intelligence teaching effectiveness.

The apply spearman r formula to examine the co-relation. The rule hypothesis used for study.

<table>
<thead>
<tr>
<th>Ex = 36221</th>
<th>Ex²=2150178</th>
<th>Exy=1638930</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey= 17560</td>
<td>Ey²=1120821</td>
<td>N=160</td>
</tr>
</tbody>
</table>

X = teachers Emotional intelligence

y = Teacher teaching effectiveness

obtained co-relation = 0.020

Degree of freedom = 158

For dt 160

0.05 level 0.159

0.01 level 0.208

Co-relation between teachers emotional intelligence and teaching effectiveness
Table 4.12

Co-relation between emotion intelligence and teaching effectiveness

<table>
<thead>
<tr>
<th>No.</th>
<th>Degree of freedom</th>
<th>‘r’ value</th>
<th>Obtained co-relation</th>
<th>Significant level 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.05</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>160</td>
<td>0.159</td>
<td>0.208</td>
<td>0.020</td>
</tr>
</tbody>
</table>

‘r’ EXPLANATION r - TEST

The value of r instable at 0.05 level is 0.159 and at 0.01 level is 0.208. The obtained r-value is 0.020. Therefore there is no significant relation between teachers emotional intelligence and teaching effectiveness at 0.05 level. The hypothesis is accepted.

Conclusion: – there is no co-relation between teaching emotional intelligence and teaching effectiveness.

HYPOTHESIS- 9

There is no significant co-relation between emotional intelligence and teaching effectiveness in rural areas.

The test of rule hypothesis to use spearman r formula.
Ex = 30707
\[Ex^2 = 908561\]
Exy = 1516285

Ey = 16865
\[Ey^2 = 255721\]
N = 158

X = teachers emotional intelligence is rural area.

Y = Teachers teaching effectiveness in rural area

Obtained co-relation (r) = 0.012

Df = 158

For df 158 value of r

0.05 level 0.159

0.01 level 0.208

Table 4.13
Co-relation table of rural teacher emotional intelligence and teaching effectiveness.

<table>
<thead>
<tr>
<th>No.</th>
<th>Degree of freedom</th>
<th>‘r’ value</th>
<th>Obtained ‘r’ value</th>
<th>Significant level .05</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>158</td>
<td>0.159</td>
<td>0.012</td>
<td>Not significant</td>
</tr>
</tbody>
</table>

‘r’ Explanation of r test
The table rule of r is 0.159 at 0.05 level and 0.208 at 0.01 level. The obtained r value is 0.012. There is no significant co-relation between teachers emotional intelligence and teaching effectiveness in rural area sat .05 level the rule hypothesis is 0.05 accepted.

Conclusion :- There is no significant co-relation between teacher emotional intelligence and teaching effectiveness in rural area.

HYPOTHESIS – 10

There is no significant co-relation between teachers emotional intelligence and teaching effectiveness in urban areas.

<table>
<thead>
<tr>
<th>Ex = 29073</th>
<th>Ex^2=86573</th>
<th>Exy=162254</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey= 13575</td>
<td>Ey^2=76282</td>
<td>N=109</td>
</tr>
</tbody>
</table>

X = Teacher emotional intelligence in urban area

Y = Teachers teaching effectiveness in urban area.

Obtained r value = 0.145

Degree of freedom = 109

For at 109 the table value as

0.05 level 0.195

0.01 level 0.254
Table 4.14

Co-relation table of urban area and teacher emotional intelligence and teacher effectiveness.

<table>
<thead>
<tr>
<th>Nos</th>
<th>Degree of freedom</th>
<th>Table r value</th>
<th>Obtain r</th>
<th>Significant level .05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.05</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>109</td>
<td>0.195</td>
<td>0.254</td>
<td>0.145</td>
</tr>
</tbody>
</table>

‘r’ Explanation of r test

The table r value as .05 level is 0.95 and 0.01 level is 0.254 and obtain r value is 0.145. There is no significant co-relation between teachers emotional intelligence and teacher effectiveness in urban area’s teacher. At 0.05 level. The rule hypothesis is accepted.

Conclusion: – There is no significant co-relation between teachers emotional intelligence and teaching effectiveness in urban areas teachers.

HYPOTHESIS - 11

There is no significant co-relation between teacher emotional intelligence and teaching effectiveness in aided teacher education college teachers

The spearmen ® formula has used for test.
Ex = 15510
Ex²=62187
Exy=97552
Ey= 8193
Ey²=25562
N=65

X = Teachers emotional intelligence in aided teacher education college

y = Teachers teaching effectiveness in aided teacher education college.

Obtained correlation (r) = 0.046

dt = 63

for dt 63 table value as

0.05 level 0.250
0.01 level 0.325

Table 4.15
Co-relation table of aided college teacher emotional intelligence and teaching effectiveness.

<table>
<thead>
<tr>
<th>No’s</th>
<th>Degree of Freedom</th>
<th>‘r’ value of table</th>
<th>Obtained ‘r’ value</th>
<th>Significant level 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>63</td>
<td>0.250</td>
<td>0.325</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not Significant</td>
</tr>
</tbody>
</table>
‘r’ Explanation of ‘ r’ test

The table r values is 0.250 at 0.05 level and 0.325 at 0.01 level. The obtained r value is 0.046. There is no significant co-relation between, teachers emotional intelligence and teaching defectiveness is aided teacher education college at 0.05 level.

The rule hypothesis is accepted.

Conclusion :- There is no significant co-relation between teachers emotional intelligence and teaching effeteness in aided Teacher education college.

HYPOTHESIS 12

There is no significant co-relation between teacher emotional intelligence and teaching effectiveness in unaided teachers education college. The spearmen ‘r’ formula has used for test.

| Ex = 42476 | Ex^2=677162 | Exy=9255122 |
| Ey= 22349 | Ey^2=815521 | N=204 |

X = Teachers emotional intelligence in unaided college

y = Teaching effectiveness of teachers in unaided college

obtained r value (r) = 0.032
degree of freedom = 204

for df 204 the table values as

0.05 level 0.138

0.01 level 0.181

Table 4.16
Co-relation table of unaided college teacher emotional intelligence and teaching effectiveness

<table>
<thead>
<tr>
<th>Nos</th>
<th>Degree of freedom</th>
<th>Table r value</th>
<th>Significant level 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>206</td>
<td>204</td>
<td>0.138</td>
<td>0.181</td>
</tr>
</tbody>
</table>

Explanation of r test

The table value is as 0.138 on 0.05 level and 0.89 on 0.01 level. The obtained r value is 0.032. There is no significant co-relation between teachers emotional intelligence and teachers teaching effectiveness in unaided college at 0.05 level.

The rule hypothesis is accepted.

Conclusion:– There is no significant co-relation. Between teachers emotional intelligence and teaching effectiveness in unaided college of education.