Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>i – iii</td>
</tr>
<tr>
<td>Chapter 1</td>
<td></td>
</tr>
</tbody>
</table>

Introduction

1.1 The inevitable Plastic
1.2 Classification
1.2.1. Thermoplastics
1.2.2. Thermosetting plastics
1.3 Raw materials of plastics
1.4 Polyolefins
1.4.1 Applications of polyolefins
1.5 Polyethylene
1.5.1 Chemical Composition
1.5.2 Classification of polyethylene
1.5.2.1. Ultra high molecular weight polyethylene (UHMWPE)
1.5.2.2. High density polyethylene (HDPE)
1.5.2.3. Ultra low molecular weight polyethylene (ULMWPE)
1.5.2.4. Medium density polyethylene (MDPE)
1.5.2.5. Linear low density polyethylene (LLDPE)
1.5.2.6. Low density polyethylene (LDPE)
1.5.2.7. Very low density polyethylene (VLDPE)
1.6 Properties of Low density polyethylene (LDPE)
1.6.1 Physical Properties of LDPE:
1.6.2 Chemical Properties of LDPE:
1.7 Accumulation of plastic waste in the natural environment
1.8 Plastic disposal and waste management
1.9 Choice of abiotic and biodegradation of plastics
1.10 Mechanism of biodegradation
1.11 Strategies used to characterize biodegradability of polymers
1.12 Analytical techniques
1.13 Summary
CHAPTER 2

Review of Literature

2.1. Introduction

2.2 Types of plastics

2.3 Types of plastic degradation

2.3.1 Influence of Abiotic factors in the primary degradation
2.3.2 Influence of photo-oxidation on polyethylene degradation
2.3.3 Mechanism of photodegradation
2.3.4 Influence of Thermal Oxidation on polyethylene degradation
2.3.5 Mechanism of thermal degradation
2.3.6 Influence of Ozone-induced degradation of polyethylene
2.3.7 Mechanism of ozone-induced degradation
2.3.8 Influence of plasma on polyethylene surface modification
2.3.9 Influence of gamma radiation on polyethylene degradation
2.3.10 Influence of Mechano-chemical degradation of polyethylene

3.0 Strategies adopted for improving biodegradability of polyethylene:

3.1 Catalytic degradation - Incorporation of pro-oxidant additives

3.2 Photo and thermo-oxidation of polyethylene with pro-oxidants

3.3 PE – STARCH Blends:

3.3.1 Modification of starch in polyethylene Blends;

4.0 Resistance of PE towards biodegradation:

4.1 Factors affecting polymer bio-degradation

4.1.1 Molecular weight
4.1.2 Size of the molecules
4.1.3 Chemical composition
4.1.4 Introduction of functionality
4.1.5 Hydrophobic character
4.1.6 Chemical bonding

5.0 Biodegradation of polyethylene

5.1 Role of Microbes and polymer degradation
5.2 Biodegradation of polyethylene by Bacteria
5.3 Role of Bacterial cell wall in increasing affinity
5.4 Role of Fungi in Biodegradation of PE

6.0 Summary
CHAPTER 3

Objectives

CHAPTER 4

Biochemical and Molecular Characterization of Bacteria isolated from the Compost soil environment

4.1 Introduction

4.1.1 Use of 16S rRNA as a molecular identification tool

4.2 Materials and methods

4.2.1 Sample collection

4.2.2 Selective enrichment culture technique

4.2.3 Morphological and biochemical characterization

4.2.4 Gram staining

4.2.5 Motility test (Hanging drop method)

4.2.6 Biochemical Characterisation

4.2.6.1 Indole test

4.2.6.2 Methyl red test

4.2.6.3 Voges-Proskauer test

4.2.6.4 Citrate utilization test

4.2.6.5 Carbohydrate fermentation

4.2.6.6 Starch hydrolysis

4.2.6.7 Oxidase test

4.2.6.8 Catalase test

4.2.7 Molecular identification

4.2.7.1 Genomic DNA isolation

4.2.7.2 Genomic DNA Extraction

4.2.7.3 PCR amplification

4.2.8 Cloning and Sequencing

4.2.8.1 Sequencing of 16S rRNA gene and Database searching

4.3 Results and Discussion

4.4 Summary
CHAPTER 5

Modification of surface properties of polymeric films by photo-oxidation

5.0 Introduction

5.1 Experimental method

5.2 Preparation of Biodegradable PE film

5.3 Characterization techniques

5.3.1 Photo-degradation procedure

5.3.2 Contact angle and surface energy

5.3.3 Morphological analysis

5.3.4 Fourier transformed infrared spectroscopy (FT-IR)

5.3.5 Tensile strength test

5.4 Results and Discussion

5.4.1 Photo ageing of PE film sample containing pro-oxidant

5.4.2 Hydrophilic analysis: contact angle and surface energy measurements

5.4.3 Surface morphological and topographical analysis: SEM and AFM results

5.4.4 FT-IR analysis

5.4.5 Mechanical properties

5.5 Summary

CHAPTER 6

Influence of thermal oxidation on surface and mechanical properties of polyethylene

6.0 Introduction

6.1 Experimental method

6.1.1 Preparation of low density polyethylene film

6.1.2 Thermal-oxidation procedure

6.2 Characterization techniques

6.2.1 Mechanical strength test

6.2.2 Fourier transformed infrared spectroscopy (FT-IR)

6.2.3 Contact angle and surface energy

6.2.4 Morphological analysis

6.3 Results and Discussion

6.3.1 Mechanical properties

6.3.2 Structural properties - FT-IR analysis
6.3.3 Surface wettability
6.3.4 Surface morphological and topographical analysis: SEM and AFM

6.4 Summary

CHAPTER 7

Effect of glow discharge plasma on surface and mechanical properties of polyethylene film

7.1 Introduction

7.2 Experimental

7.2.1 Preparation of low density polyethylene film
7.2.2. DC glow plasma treatment
7.2.3 Characterization techniques

7.2.3.1 Mechanical strength test
7.2.3.2 Fourier transformed infrared spectroscopy (FT-IR)
7.2.3.3 Contact angle and surface energy
7.2.3.4 Surface topological and morphological analysis

7.3 Results and Discussion

7.3.1 Mechanical properties
7.3.2 Structural properties
7.3.3. Hydrophilic analysis: Contact angle and surface energy
7.3.4. Surface morphological studies; AFM
7.3.5. Surface morphological studies: SEM

7.4. Summary

CHAPTER 8

In-vitro biodegradation of LDPE by Bacillus cereus strain Ma-Su

8.1 Introduction

8.2 Materials and Methods

8.2.1 Preparation of low density polyethylene film
8.2.2 Abiotic treatment: Photodegradation and Thermooxidation procedure
8.3.3 Biotic Treatment

8.3.3.1 Bacterial system
8.3.3.2 Chemical disinfection of films
8.3.3.3 In-vitro shake flask Culture
8.3.3.4 Colony forming unit (CFU)
8.3.3.5 Bacterial viability analysis
8.4 Fourier transformed infrared spectroscopy (FT-IR)
8.5 TGA
8.6 Differential Scanning calorimetry
8.7 Contact angle and surface energy
8.8 Morphological analysis
8.9 Results and Discussion
 8.9.1 Pre-treatment initiated abiotic degradation
 8.9.2 Microbial growth on polymer containing medium
 8.9.3 Bacterial viability
 8.9.4 FTIR studies
 8.9.5 Wettability analysis: contact angle and surface energy measurements
 8.9.6 Thermogravimetric analysis (TGA)
 8.9.7 Differential scanning colorimetry (DSC)
 8.9.8 Mechanical Properties
 8.9.9 Surface Morphological & bacterial attachment studies
 8.9.10 Surface topological analysis: AFM
8.10 Summary

CHAPTER 9

In-vitro Biodegradation of LDPE by Lysinibacillus fusiformis strain Ma-Su

9.1 Introduction 184
9.2 Materials and Methods
 9.2.1 Preparation of low density polyethylene film
 9.2.2 Abiotic treatment: Photodegradation and Thermooxidation procedure
9.3 Biotic Treatment
 9.3.3.1 Bacterial system
 9.3.3.2 Chemical disinfection of films
 9.3.3.3 In-vitro flask Culture
 9.3.3.4 Colony forming unit (CFU)
 9.3.3.5 Bacterial viability analysis
9.4 Fourier transformed infrared spectroscopy (FT-IR)
9.5 TGA
9.6 Differential Scanning calorimetry
9.7 Contact angle and surface energy
9.8 Morphological analysis
9.9 Results and Discussion
 9.9.1 Pre-treatment initiated abiotic degradation
 9.9.2 Bacterial growth
 9.9.3 Bacterial viability
 9.9.4 FTIR studies
 9.9.5 Wettability analysis: contact angle and surface energy measurements
 9.9.6 Thermal analysis – TGA
 9.9.7 Differential scanning colorimetry (DSC)
 9.9.8 Mechanical Properties
 9.9.9 Surface Morphological & bacterial attachment studies
 9.9.10 Surface topological analysis: AFM
9.10 Summary

CHAPTER 10

Summary and Conclusion 220
References 226