SYMBOLS

\(A \): Ordering cost per order
\(H \): Holding cost per unit time
\(D \): Deterioration cost per unit per item
\(S \): Shortage cost per unit per item
\(O \): Cost of lost sales per unit
\(D(t) \): Demand rate at any time \(t \)
\(T \): Total Cycle length
\(t_2 \): The inventory becomes zero at that time
\(I_{\text{max}} \): Size of initial inventory
\(Q \): Total ordering quantity
\(I_a(t) \): Positive inventory at time \(t \) during \(0 \leq t \leq t_1 \)
\(I_b(t) \): Positive inventory at time \(t \) during \(t_1 \leq t \leq t_2 \)
\(I_c(t) \): Negative inventory at time \(t \) during \(t_2 \leq t \leq T \)
\(B(t) = \frac{1}{1 + \delta(T-t)} \): The partial backlogging rate with \(\delta > 0 \) denote the backlogging parameter during \(t_1 \leq t \leq T \)
\(\theta \): Rate of deterioration.
\(\mu \): The parameter of the ramp type demand function
\(t_1 \): The time when inventory level reaches zero
\(t_1^* \): The optimal point for the replenishment policy
\(I(t) \): On hand inventory level at time \(t \) over the ordering cycle \([0, T]\)

The demand rate \(F(t) \) is defined as ramp type function of time and is defined as:

\[
F(t) = \begin{cases}
Dt, & t < \mu, \\
D\mu, & t \geq \mu,
\end{cases}
\]
\(Dt\) is positive and continuous for \(t \in [0, T]\)

We considered \(i = 1, 2, 3, ..., n\) for suppliers, \(j = 1, 2, 3, ..., m\) for products and \(k = 1, 2, 3, ..., l\) for retailers

\[P(t) = \lambda D(t),\] where \(D(t) = be^{at}\) and \(\lambda > 1\), production rate is demand dependent

\(D(t)\): Demand rate at any time \(t\)

\(\lambda be^{at}\): Producer’s production rate that is equal to supplier’s demand rate

\(\lambda be_{e}^{at}\): Producer’s demand rate for multi-item

\(\alpha_s\): Supplier’s percentage of raw material to produce products

\(\alpha\): Supplier’s proportional probability of imperfect items with probability density

Function \(f(\alpha)\)

\(T_r\): Retailer’s cycle length for multi products

\(T\): Retailer’s cycle length

\(\beta\): Producer’s proportional probability of imperfect items with probability density

function \(g(\beta)\)

\(\beta_p\): Product’s demand percentage for multi-item to fulfill the demand of the retailers

\(T_s\): Supplier’s cycle length

\(\lambda be_{e}^{a}T\): Production rate of multi products

\(T_{p_r}\): Producer’s cycle length for multi products

\(T_p\): Manufacturing run-time of multi products

\(C(P)\): Per unit item production cost for multi-item for the producer

\(T_k\): Time for collecting multi products from producer for the retailers

\(n\): Multiple suppliers

\(l\): Multiple retailers

\(m\): Multiple items

\(Q_s(t)\): Supplier’s on-hand inventory of good items at time \(t\)
\(Q_p(t) \): Producer’s on-hand inventory of good items at time \(t \)

\(Q_{pr}(t) \): Producer’s on-hand inventory of defective items which would be reworked.

\(Q_r(t) \): Retailer’s on-hand inventory of good items at time \(t \)

\(R \): Supplier’s replenishment lot size

\(\lambda \): Producer’s production rate that is equal to supplier’s demand rate

\(A_s \): Supplier’s set up cost

\(r_s \): Supplier’s screening rate per unit time

\(S_s \): Supplier’s screening cost per unit item

\(h_s \): Supplier’s holding cost per unit per unit time

\(I_s \): Supplier’s cost per unit idle time

\(C_s \): Supplier’s purchasing cost per unit item

\(w_s \): Supplier’s selling price per unit perfect items

\(\overline{w}_s \): Supplier’s selling price per unit imperfect items

\(E(x) \): Expectation of variable \(x \)

\(SAP \): Supplier’s average profit

\(ESAP \): Supplier’s expected average profit

\(\beta \): Producer’s proportional probability of imperfect items with probability density function \(g(\beta) \)

\(\lambda \beta e^{-\lambda t} \): Reworking rate per unit time

\(\tau \): Random time with mean \(\frac{1}{\theta} \) after which the production system becomes uncontrolable

\(F(\tau) \): Probability distributions function of \(\tau \)

\(f(\tau) \): Probability density functions of \(\tau \)

\(A_p \): Producer’s set up cost

\(r_p \): Producer’s screening rate per unit time

\(S_p \): Producer’s screening cost per unit item

\(h_p \): Producer’s holding cost per unit per unit time for perfect items
\(h_p' \) : Producer’s holding cost per unit per unit time for defective items which would be reworked

\(r_p \) : Cost to rework for imperfect item of producer

\(L \) : Fixed cost like labor, energy and technology cost

\(\gamma \) : The variation constant of tool/die costs

\(p_i \) : Producer’s cost per unit idle time

\(C(P) \) : Per unit item production cost

\(N \) : Numbers of imperfect objects in the production cycle

\(w_p \) : Producer’s selling price per unit perfect item

\(\overline{w_p} \) : Producer’s selling price per unit imperfect item

\(PAP \) : Producer’s average profit

\(EPAP \) : Producer’s expected average profit

\(be_{c}^{\ast} \) : Customer’s demand rate

\(be_{r}^{\ast} \) : Retailer’s demand rate

\(A_r \) : Retailer’s set up cost

\(h_r \) : Retailer’s holding cost per unit per unit time

\(w_r \) : Retailer’s selling price per unit item

\(RAP \) : Retailer’s average profit

\(ERAP \) : Retailer’s expected average profit