Chapter 2

αC^*-sets and αC^*-continuous functions

2.1 Introduction

Erguang and Pengfei [37] have introduced the concepts of C-sets and C-continuous functions. Also, they have proved that a function is A-continuous if and only if it is C-continuous and semicontinuous. Noiri and Sayed [72] have studied the notions of η-sets, $\eta\zeta$-sets, η-continuity and $\eta\zeta$-continuity. By using these new concepts, they have obtained some new decompositions of continuous functions and A-continuous functions. In this chapter, we introduce the notions of αC^*-sets and αC-sets; and investigate their properties. By using these classes of sets, we obtain some new results.
2.2 Preliminaries

Definition 2.2.1 A subset A of a space (X, τ) is called:

1. regular open [94] if $A = \text{int}(\text{cl}(A))$ and regular closed [94] if $A = \text{cl}(\text{int}(A))$,

2. preopen [66] or nearly open [40] if $A \subseteq \text{int}(\text{cl}(A))$ and preclosed [66] if $\text{cl}(\text{int}(A)) \subseteq A$,

3. preregular [32] if it is both preopen and preclosed,

4. an α-locally closed (briefly α-lc) [42] if $A = G \cap F$, where G is α-open and F is α-closed in X,

5. an $\eta\varsigma$-set [72] if $A = G \cap F$, where G is open and F is clopen in X,

6. an α LC-set [7] if $A = G \cap F$, where G is α-open and $\text{cl}(F) = F$,

7. an $\alpha\mathcal{A}$-set [14] if $A = G \cap F$, where G is α-open and $F = \text{cl}(\text{int}(F))$,

8. a \mathcal{A}-set [100] if $A = G \cap F$, where G is open and $F = \text{cl}(\text{int}(F))$.

The family of all α-open sets of (X, τ) forms a topology and is denoted by τ^α.

A space X is called extremally disconnected [17] if every open subset of X has open closure or equivalently if every regular closed set is open.
2.3 Properties of \(\alpha C^*\)-sets and \(\alpha C\)-sets in topological spaces

Definition 2.3.1 A subset \(A\) of a space \((X, \tau)\) is called

1. an \(\alpha C^*\)-set if \(A = G \cap R\), where \(G\) is \(\alpha\)-open and \(R\) is preregular,

2. an \(\alpha C\)-set if \(A = G \cap B\), where \(G\) is \(\alpha\)-open and \(B\) is preclosed,

3. an \(\alpha B\)-set if \(A = G \cap B\), where \(G\) is \(\alpha\)-open and \(B\) is \(t\)-set.

The collection of all \(\alpha C^*\)-sets (resp. \(\alpha C\)-sets) in \(X\) will be denoted by \(\alpha C^*(X)\) (resp. \(\alpha C(X)\)).

Remark 2.3.2 The following diagram holds for a subset \(A\) of a space \(X\):

\[
\begin{array}{ccc}
\eta\zeta\text{-set} & \Rightarrow & \alpha C^*\text{-set} \Rightarrow \alpha C\text{-set} \\
\downarrow & & \uparrow \\
\alpha \mathcal{A}\text{-set} & \Rightarrow & \alpha LC\text{-set} \quad \alpha \text{-lc-set}
\end{array}
\]

None of these implications is reversible as shown in the following Examples.

Example 2.3.3 Let \(X = \{a, b, c, d\}\) and \(\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}\). Then \(\{a, b, d\}\) is an \(\alpha C^*\)-set but it is not \(\eta\zeta\)-set.

Example 2.3.4 In Example 2.3.3, \(\{c\}\) is an \(\alpha C\)-set but it is not \(\alpha C^*\)-set.

Example 2.3.5 In Example 2.3.3, \(\{b, d\}\) is an \(\alpha \mathcal{A}\)-set but it is not \(\eta\zeta\)-set.
Example 2.3.6 In Example 2.3.3, \(|c| \) is an \(\alpha \) LC-set but it is not \(\alpha \mathcal{A} \)-set.

Example 2.3.7 Let \(X = \{a, b, c\} \) and \(\tau = \{\emptyset, X, \{a, b\}\} \). Then \(|a| \) is an \(\alpha \mathcal{C} \)-set but it is not \(\alpha \)-lc-set.

Remark 2.3.8 Every \(\alpha \) LC-set is \(\alpha \)-lc-set.

Remark 2.3.9 The following Examples show that the concepts of \(\alpha \mathcal{C}^* \)-sets and \(\alpha \) LC-sets, the concepts of \(\alpha \mathcal{C}^* \)-sets and \(\alpha \)-lc-sets and the concepts of \(\alpha \mathcal{C}^* \)-sets and \(\alpha \mathcal{A} \)-sets are independent of each other.

Example 2.3.10 In Example 2.3.7, \(|a| \) is an \(\alpha \mathcal{C}^* \)-set but it is not \(\alpha \) LC-set and moreover, \(|c| \) is an \(\alpha \) LC-set but it is not \(\alpha \mathcal{C}^* \)-set.

Example 2.3.11 In Example 2.3.7, \(|a| \) is an \(\alpha \mathcal{C}^* \)-set but it is not \(\alpha \)-lc-set and moreover, \(|c| \) is an \(\alpha \)-lc-set but it is not \(\alpha \mathcal{C}^* \)-set.

Example 2.3.12 1. In Example 2.3.7, \(|a| \) is an \(\alpha \mathcal{C}^* \)-set but it is not \(\alpha \mathcal{A} \)-set.

2. In Example 2.3.3, \(\{b, d\} \) is an \(\alpha \mathcal{A} \)-set but it is not \(\alpha \mathcal{C}^* \)-set.

Remark 2.3.13 Every \(\alpha \)-open and every preregular set is an \(\alpha \mathcal{C}^* \)-set.

Remark 2.3.14 The converses of the implications in Remark 2.3.13 are not true in general as shown in the following Examples.

Example 2.3.15 In Example 2.3.7, \(\{a, b\} \) is an \(\alpha \mathcal{C}^* \)-set but it is not preregular.
Example 2.3.16 In Example 2.3.7, \(\{a\} \) is an \(\alpha C^* \)-set but it is not \(\alpha \)-open.

Theorem 2.3.17 For a subset \(A \) of a topological space \((X, \tau) \), the following properties are equivalent.

1. \(A \) is an \(\alpha C \)-set and a semi-open set in \(X \).

2. \(A = L \cap \text{cl}(\text{int}(A)) \) for an \(\alpha \)-open set \(L \).

Proof. (1) \(\Rightarrow \) (2): Suppose that \(A \) is an \(\alpha C \)-set and a semi-open set in \(X \). Since \(A \) is \(\alpha C \)-set, then we have \(A = L \cap M \), where \(L \) is an \(\alpha \)-open set and \(M \) is a preclosed set in \(X \). We have \(A \subseteq M \), so \(\text{cl}(\text{int}(A)) \subseteq \text{cl}(\text{int}(M)) \). Since \(M \) is a preclosed set in \(X \), we have \(\text{cl}(\text{int}(M)) \subseteq M \). Since \(A \) is a semi-open set in \(X \), we have \(A \subseteq \text{cl}(\text{int}(A)) \). It follows that \(A = A \cap \text{cl}(\text{int}(A)) = L \cap M \cap \text{cl}(\text{int}(A)) = L \cap \text{cl}(\text{int}(A)) \).

(2) \(\Rightarrow \) (1): Let \(A = L \cap \text{cl}(\text{int}(A)) \) for an \(\alpha \)-open set \(L \). We have \(A \subseteq \text{cl}(\text{int}(A)) \). It follows that \(A \) is a semi-open set in \(X \). Since \(\text{cl}(\text{int}(A)) \) is a closed set, then \(\text{cl}(\text{int}(A)) \) is a preclosed set in \(X \). Hence, \(A \) is an \(\alpha C \)-set in \(X \).

Recall that a space \(X \) is called submaximal [17] if every dense subset of \(X \) is open.

Theorem 2.3.18 For a subset \(A \) of a submaximal and extremally disconnected space \((X, \tau) \), the following properties are equivalent.

1. \(A \) is open in \(X \).

2. \(A \) is preopen and \(\alpha \)-open in \(X \).
3. A is preopen and an $\alpha\mathcal{B}$-set in X.

Proof. (1) \Rightarrow (2) \Rightarrow (3): Obvious.

(3) \Rightarrow (1): It is known that if (X, τ) is a submaximal and extremally disconnected space then $\tau = \tau^a$. By preopenness of A, $A \subseteq \text{int}(\text{cl}(A)) = \text{int}(\text{cl}(U \cap V))$, where U is α-open and V is a t-set. Hence $A \subseteq U \cap A \subseteq U \cap \text{int}(\text{cl}(U)) \cap \text{int}(\text{cl}(V)) = U \cap \text{int}(V) = \text{int}(A)$. This shows that A is open.

Definition 2.3.19 1. A subset A of a space X is called α-generalized preclosed (briefly, αgp-closed) in X if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in X.

2. A is called αgp-open if its complement is αgp-closed set or equivalently, if $N \subseteq \text{pint}(A)$ whenever $N \subseteq A$ and N is α-closed in X, where $\text{pint}(A) = A \cap \text{int}(\text{cl}(A))$.

Theorem 2.3.20 For a subset A of a topological space (X, τ), A is αgp-closed if and only if $\text{pcl}(A) \subseteq N$ whenever $A \subseteq N$ and N is an α-open set in (X, τ).

Proof. Let A be an αgp-closed set in X. Suppose that $A \subseteq N$ and N is an α-open set in (X, τ). Then $X \setminus A$ is αgp-open and $X \setminus N \subseteq X \setminus A$ where $X \setminus N$ is α-closed. Since $X \setminus A$ is αgp-open, then we have $X \setminus N \subseteq \text{pint}(X \setminus A)$, where $\text{pint}(X \setminus A) = (X \setminus A) \cap \text{int}(\text{cl}(X \setminus A))$. Since $(X \setminus A) \cap \text{int}(\text{cl}(X \setminus A)) = (X \setminus A) \cap \text{cl}(\text{int}(A))$, $\text{cl}(\text{cl}(X \setminus A)) = X \setminus (A \cup \text{cl}(\text{int}(A)))$, then $(X \setminus A) \cap \text{int}(\text{cl}(X \setminus A)) = X \setminus \text{pcl}(A)$. It follows that $\text{pint}(X \setminus A) = X \setminus \text{pcl}(A)$. Thus $\text{pcl}(A) = X \setminus \text{pint}(X \setminus A) \subseteq N$ and hence $\text{pcl}(A) \subseteq N$. The converse is similar.
Theorem 2.3.21 Let \((X, \tau)\) be a topological space and \(V \subseteq X\). Then \(V\) is an \(\alpha C\)-set in \(X\) if and only if \(V = G \cap \text{pcl}(V)\) for an \(\alpha\)-open set \(G\) in \(X\).

Proof. If \(V\) is an \(\alpha C\)-set, then \(V = G \cap M\) for an \(\alpha\)-open set \(G\) and a preclosed set \(M\). But then \(V \subseteq M\) and so \(V \subseteq \text{pcl}(V) \subseteq M\). It follows that \(V = V \cap \text{pcl}(V) = G \cap M \cap \text{pcl}(V) = G \cap \text{pcl}(V)\). Conversely, it is enough to prove that \(\text{pcl}(V)\) is a preclosed set. But \(\text{pcl}(V) \subseteq M\), for any preclosed set \(M\) containing \(V\). So, \(\text{cl}(\text{int}(\text{pcl}(V))) \subseteq \text{cl}(\text{int}(M)) \subseteq M\). It follows that \(\text{cl}(\text{int}(\text{pcl}(V))) \subseteq \cap V \subseteq M\), \(M\) is preclosed, \(M = \text{pcl}(V)\).

Theorem 2.3.22 For a subset \(A\) of a topological space \((X, \tau)\), the following are equivalent:

1. \(A\) is preclosed,
2. \(A\) is an \(\alpha C\)-set and \(\alpha gp\)-closed.

Proof. (1) \(\Rightarrow\) (2). Follows from the fact that every preclosed set is an \(\alpha C\)-set and \(\alpha gp\)-closed.

(2) \(\Rightarrow\) (1). Since \(A\) is an \(\alpha C\)-set, we have \(A = G \cap \text{pcl}(A)\) for an \(\alpha\)-open set \(G\) in \(X\). We obtain \(A \subseteq G\). Since \(A\) is \(\alpha gp\)-closed, then \(\text{pcl}(A) \subseteq G\). Hence, \(\text{pcl}(A) \subseteq G \cap \text{pcl}(A) = A\) and thus, \(A\) is preclosed.

Recall that a space \(X\) is called a partition space or locally indiscrete \([29, 70]\) if every open subset of \(X\) is closed.

Theorem 2.3.23 Every an \(\alpha C\)-set of a locally indiscrete space \((X, \tau)\) is an \(\alpha C^*\)-set.
Proof. Let A be an αC-set in X. Then there exist an α-open set G and a preclosed set B such that $A = G \cap B$. It is well known that X is locally indiscrete if and only if every subset of X is preopen. So, B is also preopen. Thus, A is an αC^*-set.

Theorem 2.3.24 [25] A subset A of a topological space (X, τ) is semi-closed if and only if A is a t-set.

Theorem 2.3.25 Let (X, τ) be a submaximal and extremally disconnected space and $A \subseteq X$. The following properties are equivalent.

1. A is an open set in X.
2. A is an α-open set and a \mathcal{A}-set.
3. A is a preopen and an $\alpha \mathcal{A}$-set.

Proof. (1) \Rightarrow (2): It follows from the fact that every open set is an α-open set and a \mathcal{A}-set.

(2) \Rightarrow (3): It follows from the fact that every α-open set is preopen and every \mathcal{A}-set is $\alpha \mathcal{A}$-set.

(3) \Rightarrow (1): Suppose that A is a preopen set and an $\alpha \mathcal{A}$-set. Since A is an $a \mathcal{A}$-set, then we have $A = L \cap M$, where L is an α-open set and $M = \text{cl}(\text{int}(M))$. It follows that $\text{int}(\text{cl}(M)) \subseteq \text{cl}(M) \subseteq \text{cl}(M) = \text{cl}(\text{int}(M)) = M$. Since $\text{int}(\text{cl}(M)) \subseteq M$, then M is a semi-closed set. By Theorem 2.3.24, M is a t-set. Hence, A is an αB-set. Since A is an αB-set and a preopen set, then by Theorem 2.3.18, A is an open set in X.
Theorem 2.3.26 Let \((X, \tau)\) be a submaximal and extremally disconnected space and \(A \subseteq X\). The following properties are equivalent.

1. \(A\) is an \(\alpha\)-open set in \(X\).
2. \(A\) is a preopen and an \(\alpha A\)-set.

Proof. (1) \(\Rightarrow\) (2): It follows from the fact that every \(\alpha\)-open set is preopen and every \(\alpha\)-open set is an \(\alpha A\)-set.

(2) \(\Rightarrow\) (1): Suppose that \(A\) is a preopen set and an \(\alpha A\)-set. Since \(A\) is an \(\alpha A\)-set, then we have \(A = L \cap M\), where \(L\) is an \(\alpha\)-open set and \(M = \text{cl}(\text{int}(M))\). It follows that \(\text{int}(\text{cl}(M)) \subseteq \text{cl}(M) \subseteq \text{cl}(M) = \text{cl}(\text{int}(M)) = M\). Since \(\text{int}(\text{cl}(M)) \subseteq M\), then \(M\) is a semi-closed set. By Theorem 2.3.24, \(M\) is a \(t\)-set. Hence, \(A\) is an \(\alpha B\)-set. Since \(A\) is an \(\alpha B\)-set and a preopen set, then by Theorem 2.3.18, \(A\) is an \(\alpha\)-open set in \(X\).

Remark 2.3.27 1. The notions of preopen sets and \(\alpha A\)-sets are independent of each other, in general.

2. The notions of \(\alpha\)-open sets and \(A\)-sets are independent of each other, in general.

Example 2.3.28 1. In Example 2.3.7, \({a}\) is preopen but it is not \(\alpha A\)-set.

2. In Example 2.3.3, \({a, d}\) is \(\alpha A\)-set but it is not preopen.

Example 2.3.29 In Example 2.3.3, \({a, b, d}\) is \(\alpha\)-open set but it is not \(A\)-set and moreover, \({b, c, d}\) is \(A\)-set but it is not \(\alpha\)-open.
Theorem 2.3.30 Let A be a subset of a topological space (X, τ). If $A \in \alpha C(X)$, then $\text{pcl}(A) - A$ is preclosed.

Proof. Let $A \in \alpha C(X)$. It follows from Theorem 2.3.21 that $A = G \cap \text{pcl}(A)$ for some α-open set G. Thus, $\text{pcl}(A) - A = \text{pcl}(A) - (G \cap \text{pcl}(A)) = \text{pcl}(A) \cap (X - (G \cap \text{pcl}(A))) = \text{pcl}(A) \cap ((X - G) \cup (X - \text{pcl}(A))) = (\text{pcl}(A) \cap (X - G)) \cup (\text{pcl}(A) \cap (X - \text{pcl}(A))) = (\text{pcl}(A) \cap (X - G)) \cup \emptyset = \text{pcl}(A) \cap (X - G)$. Hence, $\text{pcl}(A) - A$ is preclosed.

Theorem 2.3.31 Let A be a subset of a topological space (X, τ). If $A \in \alpha C(X)$, then $A \cup (X - \text{pcl}(A))$ is preopen.

Proof. Let $A \in \alpha C(X)$. Since $\text{pcl}(A) - A$ is preclosed, it follows from Theorem 2.3.30 that $X - (\text{pcl}(A) - A)$ is preopen. Thus, $X - (\text{pcl}(A) - A) = X - (\text{pcl}(A) \cap (X - A)) = (X - \text{pcl}(A)) \cup A$. Therefore, $A \cup (X - \text{pcl}(A))$ is preopen.

Theorem 2.3.32 Let A be a subset of a topological space (X, τ). If $A \in \alpha C(X)$, then $A \subseteq \text{pint}(A \cup (X - \text{pcl}(A)))$.

Proof. Since $A \cup (X - \text{pcl}(A))$ is preopen, then it follows from Theorem 2.3.31 that $A \subseteq A \cup (X - \text{pcl}(A)) = \text{pint}(A \cup (X - \text{pcl}(A)))$.

Lemma 2.3.33 [85] The following are equivalent for a topological space (X, τ):

1. X is submaximal,
2. Every preopen set is open.

Theorem 2.3.34 If (X, τ) is a submaximal and extremally disconnected space, then
\[\alpha C^*(X) = \eta_\zeta(X). \]

Where $\eta_\zeta(X)$ denotes the family of η_ζ-sets of a space X.

Proof. Obvious.

Theorem 2.3.35 The following hold for an extremally disconnected space (X, τ):

1. Every $\alpha \mathcal{A}$-set of X is an αC^*-set.
2. Every $\alpha \mathcal{B}$-set of X is an αC-set.

Proof. (1) Let $A \subseteq X$ be an $\alpha \mathcal{A}$-set. Then $A = G \cap P$, where G is α-open and P is regular closed. Since X is extremally disconnected, then P is preopen. Therefore, A is an αC^*-set.

(2) Let $A \subseteq X$ be an $\alpha \mathcal{B}$-set. Then $A = G \cap P$, where G is α-open and P is semi-closed. Since X is extremally disconnected, then P is preclosed. Thus, A is an αC-set.

2.4 αC^*-continuous

Definition 2.4.1 A function $f : (X, \tau) \to (Y, \sigma)$ is called αC^*-continuous if $f^{-1}(G) \in \alpha C^*(X)$ for each $G \in \sigma$.
Definition 2.4.2 A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called

1. \(\eta_\zeta \)-continuous [72] if \(f^{-1}(G) \in \eta_\zeta(X) \) for each \(G \in \sigma \).

2. \(\alpha \mathrm{C} \)-continuous if \(f^{-1}(G) \in \alpha \mathrm{C}(X) \) for each \(G \in \sigma \).

3. \(\alpha \mathrm{LC} \)-continuous [7] if \(f^{-1}(G) \) is \(\alpha \mathrm{LC} \)-set in \(X \) for each \(G \in \sigma \).

4. \(\alpha \mathrm{lc} \)-continuous [42] if \(f^{-1}(G) \) is \(\alpha \mathrm{lc} \)-set in \(X \) for each \(G \in \sigma \).

5. \(\alpha \mathcal{A} \)-continuous [14] if \(f^{-1}(G) \) is \(\alpha \mathcal{A} \)-set in \(X \) for each \(G \in \sigma \).

Remark 2.4.3 The following diagram holds for a function \(f : (X, \tau) \rightarrow (Y, \sigma) \):

\[
\begin{array}{ccc}
\alpha \mathrm{C}^* \text{-continuous} & \rightarrow & \alpha \mathrm{C} \text{-continuous} \\
\uparrow & & \uparrow \\
\eta_\zeta \text{-continuous} & & \alpha \mathrm{lc} \text{-continuous} \\
\downarrow & & \\
\alpha \mathcal{A} \text{-continuous} & \rightarrow & \alpha \mathrm{LC} \text{-continuous}
\end{array}
\]

None of the implications in the above diagram is reversible as shown in the following Examples.

Example 2.4.4 Let \(X = Y = \{a, b, c, d\} \), \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X \} \) and \(\sigma = \{\emptyset, \{c\}, \{d\}, \{c, d\}, Y\} \). Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be the identity function. Then \(f \) is an \(\alpha \mathrm{C} \)-continuous function but not an \(\alpha \mathrm{C}^* \)-continuous.

Example 2.4.5 Let \(X = Y = \{a, b, c, d\} \), \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X \} \) and \(\sigma = \{\emptyset, \{a, b, d\}, Y\} \). Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be the identity function. Then \(f \) is an \(\alpha \mathrm{C}^* \)-continuous function but not an \(\eta_\zeta \)-continuous.
Example 2.4.6 Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, [a, b], X\}$ and $\sigma = \{\emptyset, [a], [b], [a, b], Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is an αC-continuous function but not an α-lc-continuous.

Example 2.4.7 In Example 2.4.5, f is an $\alpha \mathcal{A}$-continuous function but not an $\eta \varsigma$-continuous.

Example 2.4.8 In Example 2.4.4, f is an αLC-continuous function but not an $\alpha \mathcal{A}$-continuous.

Definition 2.4.9 A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called PR-continuous if $f^{-1}(G)$ is preregular set in X for each $G \in \sigma$.

Definition 2.4.10 A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called α-continuous [67] iff $f^{-1}(G)$ is α-open in X for each $G \in \sigma$.

Remark 2.4.11 1. Every PR-continuous function is αC^\ast-continuous.

2. Every α-continuous function is αC^\ast-continuous.

Proof. (1). Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a PR-continuous function and $G \in \sigma$. Since f is PR-continuous, then $f^{-1}(G)$ is preregular set in X. By Remark 2.3.13, we have $f^{-1}(G) \in \alpha C^\ast(X)$. Hence, f is αC^\ast-continuous.

The proof of (2) is similar to that of (1).

Definition 2.4.12 A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called $\alpha \mathcal{B}$-continuous if $f^{-1}(G)$ is $\alpha \mathcal{B}$-set in X for each $G \in \sigma$.

29
Theorem 2.4.13 Let \((X, \tau)\) be an extremally disconnected space. Then

1. if \(f : (X, \tau) \to (Y, \sigma)\) is \(\alpha A\)-continuous, then \(f\) is \(\alpha C^*\)-continuous.

2. if \(f : (X, \tau) \to (Y, \sigma)\) is \(\alpha B\)-continuous, then \(f\) is \(\alpha C\)-continuous.

Proof. The proof is immediate from Theorem 2.3.35.

Theorem 2.4.14 The following are equivalent for a function \(f : (X, \tau) \to (Y, \sigma)\) where \(X\) is locally indiscrete.

1. \(f\) is \(\alpha C^*\)-continuous.

2. \(f\) is \(\alpha C\)-continuous.

Proof. The proof is immediate from Theorem 2.3.23.