Chapter – 2

TOTALLY sg-CONTINUITY, STRONGLY sg-CONTINUITY AND CONTRA sg-CONTINUITY

2.1 INTRODUCTION

Jain [57], Levine [62] and Dontchev [26] introduced totally continuous functions, strongly continuous functions and contra continuous functions, respectively. Levine [61] also introduced and studied the concepts of generalized closed sets. The notion has been studied extensively in recent years by many topologists. As generalization of closed sets, sg-closed sets were introduced and studied by Bhattacharya and Lahiri [11]. This notion was further studied by Navalagi [74, 75].

In this chapter, we will continue the study of some related functions by using sg-open sets and sg-closed sets. We introduce and characterize the concepts of totally sg-continuous, strongly sg-continuous and contra sg-continuous functions.

2.2 PRELIMINARIES

We set \(C(X, x) = \{ V \in C(X) \mid x \in V \} \) for \(x \in X \), where \(C(X) \) denotes the collection of all closed subsets of \((X, \tau)\). The set of all clopen subsets of \((X, \tau)\) is denoted by \(CO(X, \tau) \).

Definition 2.2.1
A subset A of a space (X, τ) is said to be α-open [76] if $A \subseteq \text{int}(\text{cl}(\text{int}(A)))$.

The complement of α-open set is called α-closed.

Definition 2.2.2

A subset A of a space (X, τ) is called:

(i) a \hat{g}-closed set [128] (= ω-closed [110]) if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ). The complement of \hat{g}-closed set is called \hat{g}-open.

(ii) a $*g$-closed set [127] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g}-open in (X, τ). The complement of $*g$-closed set is called $*g$-open.

(iii) a $#g$-semi-closed (briefly, $#gs$-closed) set [126] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $*g$-open in (X, τ). The complement of $#gs$-closed set is called $#gs$-open.

(iv) a \tilde{g}-semi-closed (briefly, \tilde{g} s-closed) set [122] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $#g$-open in (X, τ). The complement of \tilde{g} s-closed set is called \tilde{g} s-open.

(v) a generalized semi-closed (briefly, gs-closed) set [9] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ). The complement of gs-closed set is called gs-open.

(vi) a sg-clopen if it is both sg-open and sg-closed.

We set $\text{SGO}(X, x) = \{V \in \text{SGO}(X, \tau) \mid x \in V\}$ for $x \in X$.
Remark 2.2.3

From the Definitions 2.2.1 and 2.2.2, we have the following implications.

\[\text{closed} \rightarrow \alpha\text{-closed} \rightarrow \text{semi-closed} \]
\[\# \text{gs-closed} \leftrightarrow \tilde{g} \text{s-closed} \rightarrow \text{sg-closed} \rightarrow \text{gs-closed} \]

None of the above implications is reversible as the following example shows.

Example 2.2.4

(i) Let \(X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}. \) The set \(\{b\} \) is \(\alpha\)-closed, \(\#\text{gs-closed} \) and \(\tilde{g} \text{s-closed} \) but not closed.

(ii) Let \(X = \{a, b, c\}, \tau = \{\phi, \{a, b\}, X\}. \) The set \(\{a, c\} \) is \(\tilde{g} \text{s-closed} \) but not \(\alpha\)-closed.

(iii) Let \(X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}. \) The set \(\{a, b\} \) is \(\text{sg-closed}, \#\text{gs-closed} \) but not \(\tilde{g} \text{s-closed}. \)

(iv) Let \(X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}. \) The set \(\{b, c\} \) is \(\text{sg-closed} \) but not \(\alpha\)-closed.

(v) Let \(X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}. \) The set \(\{a\} \) is semi-closed but not \(\alpha\)-closed.

(vi) Let \(X = \{a, b, c\}, \tau = \{\phi, \{a, b\}, X\}. \) The set \(\{b, c\} \) is \(\text{sg-closed}, \text{gs-closed} \) but not semi-closed.
(vii) Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{a, c\}, X\}$. The set $\{a, b\}$ is gs-closed but not sg-closed.

Definition 2.2.5

A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called:

(i) totally continuous [57] if the inverse image of every open subset of (Y, σ) is a clopen subset of (X, τ).

(ii) strongly continuous [62] if the inverse image of every subset of (Y, σ) is a clopen subset of (X, τ).

(iii) contra-continuous [26] (resp. contra semi-continuous [23], contra-α-continuous [53]) if the inverse image of every open subset of (Y, σ) is a closed (resp. semi-closed, α-closed) subset of (X, τ).

2.3 TWO CLASSES OF FUNCTIONS via sg-CLOPEN SETS

We introduce the following definition:

Definition 2.3.1

A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be totally semi-generalized-continuous (briefly, totally sg-continuous) if the inverse image of every open subset of (Y, σ) is a sg-clopen (i.e. sg-open and sg-closed) subset of (X, τ).

It is evident that every totally continuous function is totally sg-continuous. But the converse need not be true as shown in the following example.
Example 2.3.2

Let $X = \{a, b, c\}$, $Y = \{p, q\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{p\}, Y\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ such that $f(a) = p$, $f(b) = f(c) = q$. Then clearly f is totally sg-continuous, but not totally continuous.

Definition 2.3.3

A function $f : (X, \tau) \to (Y, \sigma)$ is said to be strongly semi-generalized-continuous (briefly, strongly sg-continuous) if the inverse image of every subset of (Y, σ) is a sg-clopen subset of (X, τ).

It is clear that strongly sg-continuous function is totally sg-continuous. But the reverse implication is not always true as shown in the following example.

Example 2.3.4

Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a\}, Y\}$. Then the identity function $f : (X, \tau) \to (Y, \sigma)$ is totally sg-continuous, but not strongly sg-continuous.

Theorem 2.3.5

Every totally sg-continuous function into T_1-space is strongly sg-continuous.

Proof

In a T_1-space, singletons are closed. Hence $f^{-1}(A)$ is sg-clopen in (X, τ) for every subset A of Y.

Remark 2.3.6
It is clear from the Theorem 2.3.5 that the classes of strongly sg-continuous functions and totally sg-continuous functions coincide when the range is a T$_1$-space.

Recall that a space (X, τ) is said to be sg-connected [15] if X cannot be expressed as the union of two non-empty disjoint sg-open sets.

Theorem 2.3.7

If f is a totally sg-continuous function from a sg-connected space X onto any space Y, then Y is an indiscrete space.

Proof

Suppose that Y is not indiscrete. Let A be a proper non-empty open subset of Y. Then $f^{-1}(A)$ is a proper non-empty sg-clopen subset of (X, τ), which is a contradiction to the fact that X is sg-connected.

Definition 2.3.8

A space X is said to be sg-T_2 [121] if for any pair of distinct points x, y of X, there exist disjoint sg-open sets U and V such that $x \in U$ and $y \in V$.

Lemma 2.3.9

The sg-closure of every sg-open set is sg-open.

Proof

Every regular open set is open and every open set is sg-open. Thus, every regular closed set is sg-closed. Now let A be any sg-open set. There exists an open set U such that $U \subset A \subset \text{cl}(U)$. Hence, we have $U \subset \text{sg-cl}(U) \subset$
sg-cl(A) ⊂ sg-cl(cl(U)) = cl(U) since cl(U) is regular closed. Therefore, sg-cl(A) is sg-open.

Theorem 2.3.10

A space X is sg-T₂ if and only if for any pair of distinct points x, y of X there exist sg-open sets U and V such that x ∈ U, and y ∈ V and sg-cl(U) ∩ sg-cl(V) = φ.

Proof

Necessity. Suppose that X is sg-T₂. Let x and y be distinct points of X. There exist sg-open sets U and V such that x ∈ U, y ∈ V and U ∩ V = φ. Hence sg-cl(U) ∩ sg-cl(V) = φ and by Lemma 2.3.9, sg-cl(U) is sg-open. Therefore, we obtain sg-cl(U) ∩ sg-cl(V) = φ.

Sufficiency. This is obvious.

Theorem 2.3.11

If f : (X, τ) → (Y, σ) is a totally sg-continuous injection and Y is T₀ then X is sg-T₂.

Proof

Let x and y be any pair of distinct points of X. Then f(x) ≠ f(y). Since Y is T₀, there exists an open set U containing say, f(x) but not f(y). Then x ∈ f⁻¹(U) and y ∈ f⁻¹(U). Since f is totally sg-continuous, f⁻¹(U) is a sg-clopen subset of X. Also, x ∈ f⁻¹(U) and y ∈ X − f⁻¹(U). By Theorem 2.3.10, it follows that X is sg-T₂.

Theorem 2.3.12
A topological space \((X, \tau)\) is sg-connected if and only if every totally sg-continuous function from a space \((X, \tau)\) into any \(T_0\)-space \((Y, \sigma)\) is constant.

Proof

Suppose that \(X\) is not sg-connected and every totally sg-continuous function from \((X, \tau)\) to \((Y, \sigma)\) is constant. Since \((X, \tau)\) is not sg-connected, there exists a proper non-empty sg-clopen subset \(A\) of \(X\). Let \(Y = \{a, b\}\) and \(\sigma = \{\emptyset, \{a\}, \{b\}, Y\}\) be a topology for \(Y\). Let \(f : (X, \tau) \to (Y, \sigma)\) be a function such that \(f(A) = \{a\}\) and \(f(Y - A) = \{b\}\). Then \(f\) is non-constant and totally sg-continuous such that \(Y\) is \(T_0\) which is a contradiction. Hence \(X\) must be sg-connected.

Converse is similar.

Theorem 2.3.13

Let \(f : (X, \tau) \to (Y, \sigma)\) be a totally sg-continuous function and \(Y\) be a \(T_1\)-space. If \(A\) is a non-empty sg-connected subset of \(X\), then \(f(A)\) is a single point.

Definition 2.3.14

Let \((X, \tau)\) be a topological space. Then the set of all points \(y\) in \(X\) such that \(x\) and \(y\) cannot be separated by a sg-separation of \(X\) is said to be the quasi sg-component of \(X\).

Theorem 2.3.15
Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a totally sg-continuous function from a topological space \((X, \tau)\) into a \(T_1\)-space \(Y\). Then \(f \) is constant on each quasi sg-component of \(X\).

Proof

Let \(x \) and \(y \) be two points of \(X\) that lie in the same quasi-sg-component of \(X\). Assume that \(f(x) = \alpha \neq \beta = f(y) \). Since \(Y \) is \(T_1 \), \(\{\alpha\} \) is closed in \(Y\) and so \(Y - \{\alpha\} \) is an open set. Since \(f \) is totally sg-continuous, therefore \(f^{-1}(\{\alpha\}) \) and \(f^{-1}(Y - \{\alpha\}) \) are disjoint sg-clopen subsets of \(X\). Further, \(x \in f^{-1}(\{\alpha\}) \) and \(y \in f^{-1}(Y - \{\alpha\}) \), which is a contradiction in view of the fact that \(y \) belongs to the quasi sg-component of \(x\) and hence \(y \) must belong to every sg-open set containing \(x\).

2.4 CONTRA-sg-CONTINUOUS FUNCTIONS

Definition 2.4.1[105]

A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called contra-sg-continuous (briefly, csg-continuous) if \(f^{-1}(V) \) is sg-open in \((X, \tau)\) for every closed set \(V\) in \((Y, \sigma)\).

It is clear that every strongly sg-continuous function is csg-continuous. But the reverse implication is not always true as shown in the following example.

Example 2.4.2

Let \(X = Y = \{a, b, c\}, \quad \tau = \{\emptyset, \{a, b\}, X\} \) and \(\sigma = \{\emptyset, \{b, c\}, Y\} \). Then the identity function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is csg-continuous but it is not strongly sg-continuous.

Definition 2.4.3
Let A be a subset of a topological space (X, τ). The set $\bigcap \{U \in \tau \mid A \subseteq U\}$ is called the kernel of A \cite{72} and is denoted by $\ker(A)$.

Lemma 2.4.4 [54]

The following properties hold for subsets A, B of a space X:

(i) $x \in \ker(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in C(X, x)$;

(ii) $A \subseteq \ker(A)$ and $A = \ker(A)$ if A is open in X;

(iii) If $A \subseteq B$, then $\ker(A) \subseteq \ker(B)$.

Theorem 2.4.5

Assume that arbitrary union of sg-open sets is sg-open. The following are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$:

(i) f is csg-continuous;

(ii) for every closed subset F of Y, $f^{-1}(F) \in SGC(C(X, \tau))$;

(iii) for each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in SGC(X, \tau)$ such that $f(U) \subseteq F$;

(iv) $f(\text{sgcl}(A)) \subseteq \ker(f(A))$ for every subset A of X;

(v) $\text{sgcl}(f^{-1}(B)) \subseteq f^{-1}(\ker(B))$ for every subset B of Y.

Proof

The implications (i) \to (ii) and (ii) \to (iii) are obvious.
(iii) \rightarrow (ii). Let F be any closed set of Y and \(x \in f^{-1}(F) \). Then \(f(x) \in F \) and there exists \(U_x \in \text{SGC}(X, x) \) such that \(f(U_x) \subseteq F \). Therefore, we obtain
\[
 f^{-1}(F) = \bigcup \{ U_x \mid x \in f^{-1}(F) \} \subseteq \text{SGC}(X, \tau).
\]

(ii) \rightarrow (iv). Let A be any subset of X. Suppose that \(y \notin \ker(f(A)) \). Then by Lemma 2.4.4 there exists \(F \in C(X, y) \) such that \(f(A) \cap F = \emptyset \). Thus, we have \(A \cap f^{-1}(F) = \emptyset \) and \(\text{sgcl}(A) \cap f^{-1}(F) = \emptyset \). Therefore, we obtain
\[
 f(\text{sgcl}(A)) \cap F = \emptyset \quad \text{and} \quad y \notin f(\text{sgcl}(A)).
\]
This implies that \(f(\text{sgcl}(A)) \subseteq \ker(f(A)) \).

(iv) \rightarrow (v). Let B be any subset of Y. By (iv) and Lemma 2.4.4, we have
\[
 f(\text{sgcl}(f^{-1}(B))) \subseteq \ker(f(f^{-1}(B))) \subseteq \ker(B) \quad \text{and} \quad \text{sgcl}(f^{-1}(B)) \subseteq f^{-1}(\ker(B)).
\]

(v) \rightarrow (i). Let V be any open set of Y. Then by Lemma 2.4.4 we have
\[
 \text{sgcl}(f^{-1}(V)) \subseteq f^{-1}(\ker(V)) = f^{-1}(V) \quad \text{and} \quad \text{sgcl}(f^{-1}(V)) = f^{-1}(V).
\]
This show that \(f^{-1}(V) \) is sg-closed in \((X, \tau)\).

Theorem 2.4.6

Every contra semi-continuous function is csg-continuous.

Proof

The proof follows from the definitions.

Remark 2.4.7
Contra sg-continuous need not be contra semi-continuous in general as shown in the following example.

Example 2.4.8

Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a, c\}, X\}$ and $\sigma = \{\emptyset, \{b, c\}, Y\}$. Then the identity function $f : (X, \tau) \to (Y, \sigma)$ is csg-continuous. However, f is not contra semi-continuous, since for the closed set $F = \{a\}$, $f^{-1}(F)$ is sg-open but not semi-open in (X, τ).

Corollary 2.4.9

Every contra α-continuous (resp. contra-continuous) function is csg-continuous.

Theorem 2.4.10

Assume that arbitrary union of sg-open sets is sg-open. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then the following are equivalent.

(i) $f : (X, \tau) \to (Y, \sigma)$ is sg-continuous.

(ii) for each x in X and each open set V in Y with $f(x) \in V$, there is a sg-open set U in X such that $x \in U$, $f(U) \subseteq V$.

Proof

(i) \Rightarrow (ii). Let $f(x) \in V$. Since f is sg-continuous we have $x \in f^{-1}(V) \in SGO(X, \tau)$. Let $U = f^{-1}(V)$. Then $x \in V$ and $f(U) \subseteq V$.

(ii) \Rightarrow (i). Let V be an open set in (Y, σ) and let $x \in f^{-1}(V)$. Then $f(x) \in V$ and thus there exists a sg-open set U_x such that $x \in U_x$ and $f(U_x) \subseteq V$. Now $x \in U_x \subseteq f^{-1}(V)$ and $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$. Therefore $f^{-1}(V)$ is sg-open in (X, τ) and consequently, f is sg-continuous.
Theorem 2.4.11
Assume that arbitrary union of sg-open sets is sg-open. If a function $f : (X, \tau) \to (Y, \sigma)$ is csg-continuous and Y is regular, then f is sg-continuous.

Proof
Let x be an arbitrary point of X and V an open set of Y containing $f(x)$. Since Y is regular, there exists an open set W in Y containing $f(x)$ such that $\text{cl}(W) \subset V$. Since f is csg-continuous, so by Theorem 2.4.5 there exists $U \in \text{SGO}(X, x)$ such that $f(U) \subset \text{cl}(W)$. Then $f(U) \subset \text{cl}(W) \subset V$. Hence, by Theorem 2.4.10 f is sg-continuous.

Theorem 2.4.12
Assume that arbitrary union of sg-open sets is sg-open. Let $f : (X, \tau) \to (Y, \sigma)$ be a function and $g : X \to X \times Y$ the graph function, given by $g(x) = (x, f(x))$ for every $x \in X$. Then f is csg-continuous if and only if g is csg-continuous.

Proof
Let $x \in X$ and let W be a closed subset of $X \times Y$ containing $g(x)$. Then $W \cap (\{x\} \times Y)$ is closed in $\{x\} \times Y$ containing $g(x)$. Also $\{x\} \times Y$ is homeomorphic to Y. Hence $\{y \in Y \mid (x, y) \in W\}$ is a closed subset of Y. Since f is csg-continuous, $\bigcup \{ f^{-1}(y) \mid (x, y) \in W\}$ is a sg-open subset of X. Further, $x \in \bigcup \{ f^{-1}(y) \mid (x, y) \in W\} \subset g^{-1}(W)$. Hence $g^{-1}(W)$ is sg-open. Then g is csg-continuous.
Conversely, let F be a closed subset of Y. Then $X \times F$ is a closed subset of $X \times Y$. Since g is csg-continuous, $g^{-1}(X \times F)$ is a sg-open subset of X. Also, $g^{-1}(X \times F) = f^{-1}(F)$. Hence f is csg-continuous.

Theorem 2.4.13

Assume that arbitrary union of sg-open sets is sg-open. If X is a topological space and for each pair of distinct points x_1 and x_2 in X there exists a function f into a Urysohn topological space Y such that $f(x_1) \neq f(x_2)$ and f is csg-continuous at x_1 and x_2, then X is sg-T_2.

Proof

Let x_1 and x_2 be any distinct points in X. Then by hypothesis there is a Urysohn space Y and a function $f : (X, \tau) \rightarrow (Y, \sigma)$, which satisfies the conditions of the theorem. Let $y_i = f(x_i)$ for $i = 1, 2$. Then $y_1 \neq y_2$. Since Y is Urysohn, there exist open neighbourhoods U_{y_1} and U_{y_2} of y_1 and y_2 respectively in Y such that $\text{cl}(U_{y_1}) \cap \text{cl}(U_{y_2}) = \emptyset$. Since f is csg-continuous at x_i, there exists a sg-open neighbourhoods W_{x_i} of x_i in X such that $f(W_{x_i}) \subseteq \text{cl}(U_{y_i})$ for $i = 1, 2$. Hence we get $W_{x_1} \cap W_{x_2} = \emptyset$ because $\text{cl}(U_{y_1}) \cap \text{cl}(U_{y_2}) = \emptyset$. Then X is sg-$T_2$.

Corollary 2.4.14

Assume that arbitrary union of sg-open sets is sg-open. If f is a csg-continuous injection of a topological space X into a Urysohn space Y, then X is sg-T_2.

Proof
For each pair of distinct points \(x_1 \) and \(x_2 \) in \(X \), \(f \) is csg-continuous function of \(X \) into Urysohn space \(Y \) such that \(f(x_1) \neq f(x_2) \) because \(f \) is injective. Hence by Theorem 2.4.13, \(X \) is sg-T_2.

Corollary 2.4.15
If \(f \) is a csg-continuous injection of a topological space \(X \) into Ultra Hausdorff space \(Y \), then \(X \) is sg-T_2.

Proof
Let \(x_1 \) and \(x_2 \) be any distinct points in \(X \). Then since \(f \) is injective and \(Y \) is Ultra Hausdorff \(f(x_1) \neq f(x_2) \) and there exist \(V_1, V_2 \in \text{CO}(Y, \sigma) \) such that \(f(x_1) \in V_1, f(x_2) \in V_2 \) and \(V_1 \cap V_2 = \emptyset \). Then \(x_1 \in f^{-1}(V_1) \in \text{SGO}(X, \tau) \) for \(i = 1, 2 \) and \(f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset \). Thus, \(X \) is sg-T_2.

Theorem 2.4.16
If \(f : (X, \tau) \to (Y, \sigma) \) is a contra sg-continuous function and \(g : (Y, \sigma) \to (Z, \eta) \) is a continuous function, then \((g \circ f) : (X, \tau) \to (Z, \eta) \) is csg-continuous.

Theorem 2.4.17
Let \(f : (X, \tau) \to (Y, \sigma) \) be surjective sg-irresolute and sg-open and \(g : (Y, \sigma) \to (Z, \eta) \) be any function. Then \((g \circ f) : (X, \tau) \to (Z, \eta) \) is csg-continuous if and only if \(g \) is csg-continuous.

Proof
The “If” part is easy to prove. To prove the “only if” part, let \((g \circ f) : (X, \tau) \to (Z, \eta) \) be csg-continuous. Let \(F \) be a closed subset of \(Z \). Then \((g \circ f)^{-1}(F) \) is a sg-open subset of \(X \). That is \(f^{-1}(g^{-1}(F)) \) is sg-open.
Since \(f \) is sg-open, \(f(f^{-1}(g^{-1}(F))) \) is a sg-open subset of \(Y \). So \(g^{-1}(F) \) is sg-open in \(Y \). Hence \(g \) is csg-continuous.

Theorem 2.4.18

Let \(\{X_i \mid i \in \bigwedge\} \) be any family of topological spaces. If \(f : X \to \prod X_i \) is a csg-continuous function. Then \(\pi_i \circ f : X \to X_i \) is csg-continuous for each \(i \in \bigwedge \), where \(\pi_i \) is the projection of \(\prod X_i \) onto \(X_i \).

Definition 2.4.19

The graph \(G(f) \) of a function \(f : (X, \tau) \to (Y, \sigma) \) is said to be csg-closed in \(X \times Y \) if for each \((x, y) \in (X \times Y) - G(f) \), there exist \(U \in \text{SGC}(X, x) \) and \(V \in \text{C}(Y, y) \) such that \((U \times V) \cap G(f) = \emptyset \).

Lemma 2.4.20

The graph \(f : (X, \tau) \to (Y, \sigma) \) is contra sg-closed (briefly, csg-closed) in \(X \times Y \) if and only if for each \((x, y) \in (X \times Y) - G(f) \), there exist \(U \in \text{SGC}(X, x) \) and \(V \in \text{C}(Y, y) \) such that \(f(U) \cap V = \emptyset \).

Proof

The proof follows from the definition.

Theorem 2.4.21

Assume that arbitrary union of sg-open sets is sg-open. If \(f : (X, \tau) \to (Y, \sigma) \) is csg-continuous and \(Y \) is Urysohn, then \(G(f) \) is contra-sg-closed in \(X \times Y \).

Proof
Let \((x, y) \in (X \times Y) - G(f)\). Then \(y \neq f(x)\) and there exist open sets \(V, W\) such that \(f(x) \in V, y \in W\) and \(\text{cl}(U) \cap \text{cl}(W) = \emptyset\). Since \(f\) is csg-continuous, there exists \(U \in \text{SGO}(X, x)\) such that \(f(U) \subset \text{cl}(V)\). Therefore, we obtain \(f(U) \cap \text{cl}(W) = \emptyset\). This shows that \(G(f)\) is contra-sg-closed.

Theorem 2.4.22

A csg-continuous image of a sg-connected space is connected.

Proof

Let \(f : (X, \tau) \to (Y, \sigma)\) be a contra-sg-continuous function of a sg-connected space \(X\) onto a topological space \(Y\). Let \(Y\) be disconnected. Let \(A\) and \(B\) form a disconnected of \(Y\). Then \(A\) and \(B\) are clopen and \(Y = A \cup B\) where \(A \cap B = \emptyset\). Since \(f\) is a contra-sg-continuous function \(X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)\) where \(f^{-1}(A)\) and \(f^{-1}(B)\) are non-empty sg-open sets in \(X\). Also \(f^{-1}(A) \cap f^{-1}(B) = \emptyset\). Hence \(X\) is non sg-connected which is a contradiction. Therefore \(Y\) is connected.

Theorem 2.4.23

Let \(X\) be sg-connected and \(Y\) be a \(T_1\) space. If \(f\) is csg-continuous, then \(f\) is constant.

Proof

Since \(Y\) is \(T_1\) space, \(\wedge = \{f^{-1}\{y\} : y \in Y\}\) is a disjoint sg-open partition of \(X\). If \(|\wedge| \geq 2\), then \(X\) is the union of two non-empty sg-open sets. Since \(X\) is sg-connected, \(|\wedge| = 1\). Hence, \(f\) is constant.
Definition 2.4.24

A topological space \((X, \tau)\) is said to be sg-normal if each pair of non-empty disjoint closed sets can be separated by disjoint sg-open sets.

Definition 2.4.25 [116]

A topological space \((X, \tau)\) is said to be ultra normal if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.

Theorem 2.4.26

If \(f : (X, \tau) \rightarrow (Y, \sigma)\) is a csg-continuous, closed injection and \(Y\) is ultra normal, then \(X\) is sg-normal.

Proof

Let \(F_1\) and \(F_2\) be a disjoint closed subsets of \(X\). Since \(f\) is closed and injective, \(f(F_1)\) and \(f(F_2)\) are disjoint closed subsets of \(Y\). Since \(Y\) is ultra normal \(f(F_1)\) and \(f(F_2)\) are separated by disjoint clopen sets \(V_1\) and \(V_2\) respectively. Hence \(F_i \subset f^{-1}(V_i)\), \(f^{-1}(V_i) \in SGO(X, \tau)\) for \(i = 1, 2\) and \(f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset\). Thus, \(X\) is sg-normal.