Chapter - 9

WEAKLY πg-CLOSED SETS

9.1 INTRODUCTION

Recently many authors have studied various classes of generalized closed sets, in general topology. Dontchev and Noiri [24] have introduced the concept of πg-closed sets and studied their most fundamental properties in topological spaces. Also, recently, Ekici and Noiri [33] have introduced a generalization of πg-closed sets and πg-open sets. In this chapter, we study a new class of generalized closed sets in topological spaces. We introduce the notions of weakly πg-closed sets and weakly πg-open sets, which are weaker forms of πg-closed sets and πg-open sets, respectively. Also, the relationships among related generalized closed sets are investigated.

9.2 PRELIMINARIES

Definition 9.2.1

A subset A of a space (X, τ) is said to be b-open set [6] if $A \subset \text{cl}(\text{int}(A)) \cup \text{int}(\text{cl}(A))$.

The complement of b-open set is called b-closed set.

Definition 9.2.2

A subset A of a space (X, τ) is called a generalized α-closed (briefly, gα-closed) set [66] if $\alpha \text{cl}(A) \subset U$ whenever $A \subset U$ and U is
α-open in \((X, \tau)\). The complement of \(g\alpha\)-closed set is called \(g\alpha\)-open set.

Definition 9.2.3

A subset \(A\) of a topological space \((X, \tau)\) is called:

(i) a weakly \(g\)-closed (briefly, \(wg\)-closed) set [119] if \(\text{cl}(\text{int}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \((X, \tau)\).

(ii) a weakly \(\bar{g}\)-closed (briefly, \(w\bar{g}\)-closed) set [100] if \(\text{cl}(\text{int}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \#gs-open in \((X, \tau)\).

(iii) a weakly \(\omega\)-closed set [103] if \(\text{cl}(\text{int}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is semi-open in \((X, \tau)\).

(iv) a regular weakly generalized closed (briefly, \(rwg\)-closed) set [73] if \(\text{cl}(\text{int}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular open in \((X, \tau)\).

Definition 9.2.4

Let \(X\) and \(Y\) be topological spaces. A function \(f : X \to Y\) is called

(i) completely continuous [8] if \(f^{-1}(V)\) is regular open in \(X\) for each open set in \(Y\).

(ii) irresolute [20] if \(f^{-1}(V)\) is semi-open in \(X\) for every semi-open subset \(V\) in \(Y\).

Definition 9.2.5 [44]

A space \((X, \tau)\) is called \(\pi g\)-\(T_{1/2}\) if every \(\pi g\)-closed set is closed.

Definition 9.2.6 [38]
A topological space \((X, \tau)\) is said to be locally \(\pi g\)-indiscrete if every \(\pi g\)-open set of \(X\) is closed in \(X\).

Definition 9.2.7 [94]

A subset \(A\) of \((X, \tau)\) is said to be \(\pi gp\)-closed if \(pcl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\pi\)-open in \(X\).

Definition 9.2.8 [94]

A space \((X, \tau)\) is called \(\pi gp\)-T\(_{1/2}\) if every \(\pi gp\)-closed set is preclosed.

Definition 9.2.9 [45]

A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is said to be almost \(\pi gp\)-continuous if \(f^{-1}(\text{int}(\text{cl}(V)))\) is a \(\pi gp\)-open set in \(X\) for every \(V \in \sigma\).

Definition 9.2.10 [37]

A function \(f : X \rightarrow Y\) is called \((\pi g, s)\)-continuous if the inverse image of each regular open set of \(Y\) is \(\pi g\)-closed in \(X\).

Definition 9.2.11 [102]

A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is said to be \(w\tilde{g}\)-continuous if the inverse image of every open set in \((Y, \sigma)\) is \(w\tilde{g}\)-open in \(X\).

Definition 9.2.12 [99]

A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is said to be \(\tilde{g}\)-continuous if the inverse image of every open set in \((Y, \sigma)\) is \(\tilde{g}\)-open in \(X\).
Definition 9.2.13 [30]

A topological space X is called πg-compact if every cover of X by πg-open sets has finite subcover.

Definition 9.2.14 [41]

A space X is said to be almost connected if X cannot be written as a disjoint union of two non-empty regular open sets.

Definition 9.2.15 [37, 38]

A space X is called πg-connected if X is not the union of two disjoint nonempty πg-open sets.

Definition 9.2.16 [38]

A function $f : X \to Y$ is called πg-open if the image of each πg-open set is πg-open.

Definition 9.2.17 [30]

A function $f : X \to Y$ is said to be πg-irresolute if $f^{-1}(V)$ is πg-closed in (X, τ) for every πg-closed set V of (Y, σ).

Lemma 9.2.18 [94]

Let Y be open in X. Then

(a) If A is π-open in Y, then there exists a π-open set B in X such that $A = B \cap Y$.

(b) If A is π-open in X, then $A \cap Y$ is π-open in Y.
9.3 WEAKLY πg-CLOSED SETS

We introduce the definition of weakly πg-closed sets in a topological space and study the relationships of such sets.

Definition 9.3.1

A subset A of a topological space (X, τ) is called a weakly πg-closed (briefly, $w\pi g$-closed) set if $\text{cl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is π-open in (X, τ).

Proposition 9.3.2

Every πg-closed set is $w\pi g$-closed. But the converse of this implication is not true in general.

Example 9.3.3

Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$. Then the set $\{c\}$ is $w\pi g$-closed but not πg-closed in (X, τ).

Theorem 9.3.4

Every $w\pi g$-closed set is $r\pi g$-closed but not conversely.

Proof

Let A be any $w\pi g$-closed set and let U be regular open set containing A. Then U is a π-open set containing A. We have $\text{cl}(\text{int}(A)) \subseteq U$. Thus, A is $r\pi g$-closed.

Example 9.3.5
Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then the set $\{a, b\}$ is rwg-closed but it is not a wπg-closed.

Theorem 9.3.6

Every wg-closed set is wπg-closed but not conversely.

Proof

Let A be any wg-closed set and let U be π-open set containing A. Then U is an open set containing A. We have $\text{cl}(\text{int}(A)) \subseteq U$. Thus, A is wπg-closed.

Example 9.3.7

Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then the set $\{a, c\}$ is wπg-closed but it is not a wg-closed.

Theorem 9.3.8

If a subset A of a topological space (X, τ) is both closed and αg-closed, then it is wπg-closed in (X, τ).

Proof

Let A be a αg-closed set in (X, τ) and U be an π-open set containing A. Then U is open containing A and so $U \supseteq \alpha\text{cl}(A) = A \cup \text{cl}(\text{int}(\text{cl}(A)))$. Since A is closed, $U \supseteq \text{cl}(\text{int}(A))$ and hence A is wπg-closed in (X, τ).

Theorem 9.3.9
If a subset A of a topological space (X, τ) is both π-open and $w\pi g$-closed, then it is closed.

Proof

Since A is both π-open and $w\pi g$-closed, $A \supset cl(int(A)) = cl(A)$ and hence A is closed in (X, τ).

Corollary 9.3.10

If a subset A of a topological space (X, τ) is both π-open and $w\pi g$-closed, then it is both regular open and regular closed in (X, τ).

Theorem 9.3.11

Let (X, τ) be a πg-$T_{1/2}$ space and $A \subset X$ be π-open. Then, A is $w\pi g$-closed if and only if A is πg-closed.

Proof

Let A be πg-closed. By Proposition 9.3.2, it is $w\pi g$-closed.

Conversely, let A be $w\pi g$-closed. Since A is π-open, by Theorem 9.3.9, A is closed. Since X is πg-$T_{1/2}$, A is πg-closed.

Theorem 9.3.12

A set A is $w\pi g$-closed if and only if $cl(int(A)) - A$ contains no non-empty π-closed set.

Proof

Necessity. Let F be a π-closed set such that $F \subset cl(int(A)) - A$. Since F^c is π-open and $A \subset F^c$, from the definition of $w\pi g$-closed set it follows that
cl(int(A)) \subseteq F^c. i.e. F \subseteq (cl(int(A)))^c. This implies that F \subseteq (cl(int(A))) \cap (cl(int(A)))^c = \phi.

Sufficiency. Let A \subseteq G, where G is \(\pi\)-open set in X. If cl(int(A)) is not contained in G, then cl(int(A)) \cap G^c is a non-empty \(\pi\)-closed subset of cl(int(A)) – A, we obtain a contradiction. This proves the sufficiency and hence the theorem.

Corollary 9.3.13

A w\(\pi\)g-closed set A is regular closed if and only if cl(int(A)) – A is \(\pi\)-closed and cl(int(A)) \supseteq A.

Proof

Necessity. Since the set A is regular closed, cl(int(A)) – A = \(\phi\) is regular closed and hence \(\pi\)-closed.

Sufficiency. By Theorem 9.3.12, cl(int(A)) – A contains no non-empty \(\pi\)-closed set. That is cl(int(A)) – A = \(\phi\). Therefore, A is regular closed.

Theorem 9.3.14

Let \((X, \tau)\) be a topological space and B \(\subset A \subset X\). If B is w\(\pi\)g-closed set relative to A and A is both open and w\(\pi\)g-closed subset of X then B is w\(\pi\)g-closed set relative to X.

Proof

Let B \(\subset U\) and U be a \(\pi\)-open in \((X, \tau)\). Then B \(\subset A \cap U\). Since B is w\(\pi\)g-closed relative to A, cl\(_A\)(int\(_A\)(B)) \(\subset A \cap U\). That is A \(\cap cl(int(B)) \subset A \cap U\). We have A \(\cap cl(int(B)) \subset U\) and then \([A \cap cl(int(B))] \cup \)
(\text{cl}(\text{int}(B)))^c \subset U \cup (\text{cl}(\text{int}(B)))^c. \text{ Since } A \text{ is } \text{wpg-closed in } (X, \tau), \text{ we have}
\text{cl}(\text{int}(A)) \subset U \cup (\text{cl}(\text{int}(B)))^c. \text{ Therefore } \text{cl}(\text{int}(B)) \subset U \text{ since } \text{cl}(\text{int}(B)) \text{ is}
\text{not contained in } (\text{cl}(\text{int}(B)))^c. \text{ Thus, } B \text{ is } \text{wpg-closed set relative to } (X, \tau).

Corollary 9.3.15

If A is both open and wpg-closed and F is closed in a topological space (X, \tau), then A \cap F is wpg-closed in (X, \tau).

Proof

Since F is closed, we have A \cap F is closed in A. Therefore cl_A(A \cap F) = A \cap F in A. Let A \cap F \subset G, where G is \pi-open in A. Then cl_A(\text{int}_A(A \cap F)) \subset G and hence A \cap F is wpg-closed in A. By Theorem 9.3.14, A \cap F
is wpg-closed in (X, \tau).

Theorem 9.3.16

If A is wpg-closed and A \subset B \subset \text{cl}(\text{int}(A)), then B is wpg-closed.

Proof

Since A \subset B, \text{cl}(\text{int}(B)) - B \subset \text{cl}(\text{int}(A)) - A. \text{ By Theorem 9.3.12}
\text{cl}(\text{int}(A)) - A \text{ contains no non-empty } \pi\text{-closed set and so } \text{cl}(\text{int}(B)) - B.

Again by Theorem 9.3.12, B is wpg-closed.

Theorem 9.3.17

Let \((X, \tau) \) be a topological space and A \subset Y \subset X and Y be open. If A is \text{wpg-closed in } X, \text{ then } A \text{ is wpg-closed relative to } Y.

Proof
Let $A \subseteq Y \cap G$ where G is π-open in (X, τ). Since A is $w\pi g$-closed in (X, τ), $A \subseteq G$ implies $\text{cl}(\text{int}(A)) \subseteq G$. That is $Y \cap (\text{cl}(\text{int}(A))) \subseteq Y \cap G$ where $Y \cap \text{cl}(\text{int}(A))$ is closure of interior of A in (Y, σ). Thus, A is $w\pi g$-closed relative to (Y, σ).

Theorem 9.3.18

If a subset A of a topological space (X, τ) is nowhere dense, then it is $w\pi g$-closed.

Proof

Since $\text{int}(A) \subseteq \text{int}(\text{cl}(A))$ and A is nowhere dense, $\text{int}(A) = \emptyset$. Therefore $\text{cl}(\text{int}(A)) = \emptyset$ and hence A is $w\pi g$-closed in (X, τ).

The converse of Theorem 9.3.18 need not be true as seen in the following example.

Example 9.3.19

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then the set $\{a\}$ is $w\pi g$-closed in (X, τ) but not nowhere dense in (X, τ).

Remark 9.3.20

If any subsets A and B of topological space X are $w\pi g$-closed, then their intersection need not be $w\pi g$-closed.

Example 9.3.21

Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. In this topological space the subsets $\{a, c\}$ and $\{a, d\}$ are $w\pi g$-closed but their intersection $\{a\}$ is not $w\pi g$-closed in (X, τ).
Proposition 9.3.22

Every $g\alpha$-closed set is $w\pi g$-closed but not conversely.

Proof

Let A be any $g\alpha$-closed subset of (X, τ) and let U be an π-open set containing A. Then U is α-open set containing A. Now $G \supset \alpha \text{cl}(A) \supset \text{cl}(\text{int}(\text{cl}(A))) \supset \text{cl}(\text{int}(A))$. Thus, A is $w\pi g$-closed in (X, τ).

The converse of Proposition 9.3.22 need not be true as seen in the following example.

Example 9.3.23

Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then the set $\{a, b, c\}$ is $w\pi g$-closed but not $g\alpha$-closed in (X, τ).

Remark 9.3.24

$w\pi g$-closedness is independent of semi-closedness, β-closedness, b-closedness, sg-closedness and \tilde{g} s-closedness in (X, τ).

Example 9.3.25

Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then the set $\{a, b, c\}$ is $w\pi g$-closed in (X, τ) but not semi-closed, β-closed, b-closed, sg-closed and \tilde{g} s-closed in (X, τ).

Example 9.3.26
Let \(X = \{a, b, c, d\} \) and \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\} \).

Then the set \(\{a, c\} \) is semi-closed, \(\beta \)-closed, \(b \)-closed, sg-closed and \(\tilde{g} \) s-closed in \((X, \tau)\) but not \(w\pi g \)-closed in \((X, \tau)\).

Remark 9.3.27

The following diagrams show the relationships established between \(w\pi g \)-closed sets and some other sets where \(A \rightarrow B \) (resp. \(A \leftrightarrow B \)) represents \(A \) implies \(B \) but not conversely (resp. \(A \) and \(B \) are independent of each other).

Diagram I

\[
\text{closed} \rightarrow w\tilde{g} \text{-closed} \rightarrow \text{weakly } \omega \text{-closed} \rightarrow wg \text{-closed} \rightarrow w\pi g \text{-closed} \\
\downarrow \\
\text{rwg-closed}
\]

Diagram II

semi-closed \(\rightarrow \) \(\beta \)-closed \(\rightarrow \beta \)-closed \(\rightarrow \) b-closed \(\rightarrow \) \(w\pi g \)-closed

wr - w\pi g-closed

\[
\begin{array}{c}
\text{sg-closed} \\
\tilde{g} \text{-s-closed}
\end{array}
\]

Definition 9.3.28

A subset \(A \) of a topological space \(X \) is called \(w\pi g \)-open set if \(A^c \) is \(w\pi g \)-closed in \(X \).
Proposition 9.3.29

(i) Every \(\pi g \)-open set is \(w \pi g \)-open;

(ii) Every \(g \)-open set is \(w \pi g \)-open.

Theorem 9.3.30

A subset \(A \) of a topological space \(X \) is \(w \pi g \)-open if \(G \subseteq \text{int}(\text{cl}(A)) \) whenever \(G \subseteq A \) and \(G \) is \(\pi \)-closed.

Proof

Let \(A \) be any \(w \pi g \)-open. Then \(A^c \) is \(w \pi g \)-closed. Let \(G \) be a \(\pi \)-closed set contained in \(A \). Then \(G^c \) is a \(\pi \)-open set in \(X \) containing \(A^c \). Since \(A^c \) is \(w \pi g \)-closed we have \(\text{cl}(\text{int}(A^c)) \subseteq G^c \). Therefore \(G \subseteq \text{int}(\text{cl}(A)) \).

Conversely, we suppose that \(G \subseteq \text{int}(\text{cl}(A)) \) whenever \(G \subseteq A \) and \(G \) is \(\pi \)-closed. Then \(G^c \) is a \(\pi \)-open set containing \(A^c \) and \(G^c \supseteq (\text{int}(\text{cl}(A)))^c \). It follows that \(G^c \supseteq \text{cl}(\text{int}(A^c)) \). Hence \(A^c \) is \(w \pi g \)-closed and so \(A \) is \(w \pi g \)-open.

9.4 WEAKLY \(\pi g \)-CONTINUOUS FUNCTIONS

Definition 9.4.1

Let \(X \) and \(Y \) be topological spaces. A function \(f : X \to Y \) is called weakly \(\pi g \)-continuous (briefly, \(w \pi g \)-continuous) if \(f^{-1}(U) \) is a \(w \pi g \)-open set in \(X \), for each open set \(U \) in \(Y \).

Example 9.4.2
Let \(X = Y = \{a, b, c\} \), \(\tau = \{\emptyset, \{a\}, \{b, c\}, X\} \) and \(\sigma = \{\emptyset, \{a\}, Y\} \). The function \(f : (X, \tau) \rightarrow (Y, \sigma) \) defined by \(f(a) = b \), \(f(b) = c \) and \(f(c) = a \) is w\(\pi \)-g-continuous, because every subset of \(X \) is w\(\pi \)-g-closed.

Proposition 9.4.3

Every \(\pi \)-g-continuous function is w\(\pi \)-g-continuous.

Proof

It follows from Proposition 9.3.29 (i).

The converse of Proposition 9.4.3 need not be true as per the following example.

Example 9.4.4

Let \(X = Y = \{a, b, c\} \), \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \) and \(\sigma = \{\emptyset, \{a\}, Y\} \). Let the function \(f : (X, \tau) \rightarrow (Y, \sigma) \) be the identity function. Then \(f \) is w\(\pi \)-g-continuous but it is not \(\pi \)-g-continuous.

Theorem 9.4.5

A function \(f : X \rightarrow Y \) is called w\(\pi \)-g-continuous if and only if \(f^{-1}(U) \) is a w\(\pi \)-g-closed set in \(X \) for each closed set \(U \) in \(Y \).

Proof

Let \(U \) be any closed set in \(Y \). According to the assumption \(f^{-1}((U^c)) = X \setminus f^{-1}(U) \) is w\(\pi \)-g-open in \(X \), so \(f^{-1}(U) \) is w\(\pi \)-g-closed in \(X \).

The converse can be proved in a similar manner.

Theorem 9.4.6
Suppose that X and Y are spaces and the family of πg-open sets of X is closed under arbitrary unions. If a function $f : X \to Y$ is contra πg-continuous and Y is regular, then f is $w\pi g$-continuous.

Proof

Let $f : X \to Y$ be contra πg-continuous and Y be regular. By Theorem 16 of [38], f is πg-continuous. Hence, f is $w\pi g$-continuous.

Theorem 9.4.7

Let $f : (X, \tau) \to (Y, \sigma)$ be a function. If f is contra πg-continuous and (X, τ) is locally πg-indiscrete, then f is $w\pi g$-continuous.

Proof

Let $f : X \to Y$ be contra πg-continuous and (X, τ) be locally πg-indiscrete. By Theorem 21 of [38], f is continuous. Hence, f is $w\pi g$-continuous.

Theorem 9.4.8

Suppose that a topological space (X, τ) is πgp-$T_{1/2}$ and submaximal and Y is regular. If f is almost πgp-continuous, then f is $w\pi g$-continuous.

Proof

Let f be almost πgp-continuous. By Theorem 30 of [45], f is almost πg-continuous. Also, by Theorem 38 of [45], f is πg-continuous. Hence, f is $w\pi g$-continuous.

Theorem 9.4.9
Let Y be a regular space and $f : X \to Y$ be a function. Suppose that the collection of πg-closed sets of X is closed under arbitrary intersections. Then if f is (πg, s)-continuous, f is $w\pi g$-continuous.

Proof

Let f be (πg, s)-continuous. By Theorem 24 of [37], f is πg-continuous. Thus, f is $w\pi g$-continuous.

Remark 9.4.10

Every \tilde{g}-continuous function is $w\tilde{g}$-continuous and every $w\tilde{g}$-continuous function is $w\pi g$-continuous but not conversely as shown in [102] and in the below example.

Example 9.4.11

Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is $w\pi g$-continuous but not $w\tilde{g}$-continuous.

Proposition 9.4.12

If $f : X \to Y$ is perfectly continuous and π-irresolute, then it is R-map.

Proof

Let V be any regular open subset of Y. According to the assumption, $f^{-1}(V)$ is both π-open and closed in X. Since $f^{-1}(V)$ is closed it is $w\pi g$-closed. Then $f^{-1}(V)$ is both π-open and $w\pi g$-closed. Hence by Corollary 9.3.10 it is regular open in X, so f is R-map.

Definition 9.4.13
A topological space X is weakly πg-compact (briefly, $w\pi g$-compact) if every $w\pi g$-open cover of X has a finite subcover.

Remark 9.4.14

Every $w\pi g$-compact space is πg-compact.

Theorem 9.4.15

Let $f : X \rightarrow Y$ be a surjective $w\pi g$-continuous function. If X is $w\pi g$-compact, then Y is compact.

Proof

Let $\{A_i : i \in I\}$ be an open cover of Y. Then $\{f^{-1}(A_i) : i \in I\}$ is a $w\pi g$-open cover of X. Since X is $w\pi g$-compact, it has a finite subcover, say $\{f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)\}$. Since f is surjective $\{A_1, A_2, \ldots, A_n\}$ is a finite subcover of Y and hence Y is compact.

Definition 9.4.16

A topological space X is weakly πg-connected (briefly, $w\pi g$-connected) if X cannot be written as the disjoint union of two non-empty $w\pi g$-open sets.

Theorem 9.4.17

If a topological space X is $w\pi g$-connected, then X is almost connected and πg-connected.

Proof

It follows from the fact that each regular open set and each πg-open set is $w\pi g$-open.
Theorem 9.4.18

For a topological space X the following statements are equivalent:

(i) X is $w\pi g$-connected.

(ii) The empty set \emptyset and X are only subsets which are both $w\pi g$-open and $w\pi g$-closed.

(iii) Each $w\pi g$-continuous function from X into a discrete space Y which has at least two points is a constant function.

Proof

(i) \Rightarrow (ii). Let $S \subset X$ be any proper subset, which is both $w\pi g$-open and $w\pi g$-closed. Its complement $X \setminus S$ is also $w\pi g$-open and $w\pi g$-closed. Then $X = S \cup (X \setminus S)$ is a disjoint union of two non-empty $w\pi g$-open sets which is a contradiction with the fact that X is $w\pi g$-connected. Hence, $S = \emptyset$ or X.

(ii) \Rightarrow (i). Let $X = A \cup B$ where $A \cap B = \emptyset$, $A \neq \emptyset$, $B \neq \emptyset$ and A, B are $w\pi g$-open. Since $A = X \setminus B$, A is $w\pi g$-closed. According to the assumption $A = \emptyset$, which is a contradiction.

(ii) \Rightarrow (iii). Let $f : X \to Y$ be a $w\pi g$-continuous function where Y is a discrete space with at least two points. Then $f^{-1}(\{y\})$ is $w\pi g$-closed and $w\pi g$-open for each $y \in Y$ and $X = \bigcup \{f^{-1}(\{y\}) \mid y \in Y\}$. According to the assumption, $f^{-1}(\{y\}) = \emptyset$ or $f^{-1}(\{y\}) = X$. If $f^{-1}(\{y\}) = \emptyset$ for all $y \in Y$, f will not be a function. Also there is no exist more than one $y \in Y$
such that \(f^{-1}(\{y\}) = X \). Hence, there exists only one \(y \in Y \) such that \(f^{-1}(\{y\}) = X \) and \(f^{-1}(\{y_1\}) = \emptyset \) where \(y \neq y_1 \in Y \). This shows that \(f \) is a constant function.

(iii) \(\Rightarrow \) (ii). Let \(S \neq \emptyset \) be both \(w\pi g \)-open and \(w\pi g \)-closed in \(X \). Let \(f : X \to Y \) be a \(w\pi g \)-continuous function defined by \(f(S) = \{a\} \) and \(f(X \setminus S) = \{b\} \) where \(a \neq b \). Since \(f \) is constant function we get \(S = X \).

Theorem 9.4.19

Let \(f : X \to Y \) be a \(w\pi g \)-continuous surjective function. If \(X \) is \(w\pi g \)-connected, then \(Y \) is connected.

Proof

We suppose that \(Y \) is not connected. Then \(Y = A \cup B \) where \(A \cap B = \emptyset \), \(A \neq \emptyset \), \(B \neq \emptyset \) and \(A, B \) are open sets in \(Y \). Since \(f \) is \(w\pi g \)-continuous surjective function \(X = f^{-1}(A) \cup f^{-1}(B) \) are disjoint union of two non-empty \(w\pi g \)-open subsets. This is contradiction with the fact that \(X \) is \(w\pi g \)-connected.

9.5 WEAKLY \(\pi g \)-OPEN FUNCTIONS AND WEAKLY \(\pi g \)-CLOSED FUNCTIONS

Definition 9.5.1
Let X and Y be topological spaces. A function \(f : X \to Y \) is called weakly \(\pi_g \)-open (briefly, \(w\pi_g \)-open) if \(f(V) \) is a \(w\pi_g \)-open set in Y for each open set \(V \) in X.

Remark 9.5.2

Every \(\pi_g \)-open function is \(w\pi_g \)-open but not conversely.

Example 9.5.3

Let \(X = Y = \{a, b, c, d\} \), \(\tau = \{\phi, \{a\}, \{a, b, d\}, X\} \) and \(\sigma = \{\phi, \{a\}, \{b, c\}, \{a, b, c\}, Y\} \). Let \(f : (X, \tau) \to (Y, \sigma) \) be the identity function. Then \(f \) is \(w\pi_g \)-open but not \(\pi_g \)-open.

Definition 9.5.4

Let X and Y be topological spaces. A function \(f : X \to Y \) is called weakly \(\pi_g \)-closed (briefly, \(w\pi_g \)-closed) if \(f(V) \) is a \(w\pi_g \)-closed set in Y for each closed set \(V \) in X.

It is clear that an open function is \(w\pi_g \)-open and a closed function is \(w\pi_g \)-closed.

Theorem 9.5.5

Let X and Y be topological spaces. A function \(f : X \to Y \) is \(w\pi_g \)-closed if and only if for each subset \(B \) of Y and for each open set \(G \) containing \(f^{-1}(B) \) there exists a \(w\pi_g \)-open set \(F \) of Y such that \(B \subset F \) and \(f^{-1}(F) \subset G \).

Proof
Let B be any subset of Y and let G be an open subset of X such that \(f^{-1}(B) \subseteq G \). Then \(F = Y \setminus f(X \setminus G) \) is \(w\pi g \)-open set containing B and \(f^{-1}(F) \subseteq G \).

Conversely, let U be any closed subset of X. Then \(f^{-1}(Y \setminus f(U)) \subseteq X \setminus U \) and \(X \setminus U \) is open. According to the assumption, there exists a \(w\pi g \)-open set F of Y such that \(Y \setminus f(U) \subseteq F \) and \(f^{-1}(F) \subseteq X \setminus U \). Then \(U \subseteq X \setminus f^{-1}(F) \). From \(Y \setminus F \subseteq f(U) \subseteq f(X \setminus f^{-1}(F)) \) \(\subseteq Y \setminus F \) follows that \(f(U) = Y \setminus F \), so \(f(U) \) is \(w\pi g \)-closed in Y. Therefore \(f \) is a \(w\pi g \)-closed function.

Remark 9.5.6

The composition of two \(w\pi g \)-closed functions need not be \(w\pi g \)-closed as we can see from the following example.

Example 9.5.7

Let \(X = Y = Z = \{a, b, c\} \), \(\tau = \{\phi, \{a\}, \{b, c\}, X\} \) and \(\sigma = \{\phi, \{a\}, \{a, b\}, Y\} \) and \(\eta = \{\phi, \{a\}, \{b\}, \{a, b\}, Z\} \). We define \(f : (X, \tau) \rightarrow (Y, \sigma) \) and \(g : (Y, \sigma) \rightarrow (Z, \eta) \) be the identity functions. Hence both \(f \) and \(g \) are \(w\pi g \)-closed functions. For a closed set \(U = \{a\} \), \((g \circ f)(U) = g(f(U)) = g(\{a\}) = \{a\} \) which is not \(w\pi g \)-closed in Z. Hence the composition of two \(w\pi g \)-closed functions need not be \(w\pi g \)-closed.

Theorem 9.5.8
Let X, Y and Z be topological spaces. If $f : X \to Y$ be a closed function and $g : Y \to Z$ be a $w\pi g$-closed function, then $g \circ f : X \to Z$ is a $w\pi g$-closed function.

Definition 9.5.9

A function $f : X \to Y$ is called a weakly πg-irresolute (briefly, $w\pi g$-irresolute) if $f^{-1}(U)$ is a $w\pi g$-open set in X for each $w\pi g$-open set U in Y.

Example 9.5.10

Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{b\}, \{a, c\}, X\}$ and $\sigma = \{\emptyset, \{b\}, \{a, c\}, \{a, c\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is $w\pi g$-irresolute.

Remark 9.5.11

The following examples show that irresoluteness and $w\pi g$-irresoluteness are independent.

Example 9.5.12

Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{a, c\}, \{a, c\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is $w\pi g$-irresolute but not irresolute.

Example 9.5.13

Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a, b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is irresolute but not $w\pi g$-irresolute.
Remark 9.5.14

Every πg-irresolute function is $w\pi g$-continuous but not conversely. Also, the concepts of πg-irresoluteness and $w\pi g$-irresoluteness are independent of each other.

Example 9.5.15

Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b, d\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is $w\pi g$-continuous but not πg-irresolute.

Example 9.5.16

Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, \{a, b, c\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is πg-irresolute but not $w\pi g$-irresolute.

Example 9.5.17

Let $X = \{a, b, c, d\}$, $Y = \{p, q\}$, $\tau = \{\phi, \{d\}, \{b, c\}, \{b, c, d\}, X\}$ and $\sigma = \{\phi, \{p\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be defined as $f(a) = f(c) = f(d) = p$ and $f(b) = q$. Then f is $w\pi g$-irresolute but not πg-irresolute.

Theorem 9.5.18

The composition of two $w\pi g$-irresolute functions is also $w\pi g$-irresolute.

Theorem 9.5.19

Let $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ be functions such that $g \circ f : X \rightarrow Z$ is $w\pi g$-closed function. Then the following statements hold:
(i) if f is continuous and injective, then g is $w\pi g$-closed.

(ii) if g is $w\pi g$-irresolute and injective, then f is $w\pi g$-closed.

Proof

(i) Let F be a closed set of Y. Since $f^{-1}(F)$ is closed in X, we can conclude that $(g \circ f)(f^{-1}(F))$ is $w\pi g$-closed in Z. Hence $g(F)$ is $w\pi g$-closed in Z. Thus g is a $w\pi g$-closed function.

(ii) It can prove in a similar manner as (i).

Theorem 9.5.20

If $f : X \to Y$ is a $w\pi g$-irresolute function, then it is $w\pi g$-continuous.

Remark 9.5.21

The converse of the above need not be true in general. Let $X = Y = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\emptyset, \{d\}, Y\}$. The function $f : X \to Y$ defined as $f(a) = d$, $f(b) = c$, $f(c) = b$ and $f(d) = a$. Then f is $w\pi g$-continuous but not $w\pi g$-irresolute. Since $f^{-1}(\{a\}) = \{d\}$ is not $w\pi g$-open in X.

Theorem 9.5.22

If $f : X \to Y$ is a surjective $w\pi g$-irresolute function and X is $w\pi g$-compact, then Y is $w\pi g$-compact.

Theorem 9.5.23

If $f : X \to Y$ is surjective $w\pi g$-irresolute function and X is $w\pi g$-connected, then Y is $w\pi g$-connected.