LIST OF FIGURES

Figure 1: Representation of MYMV affected leaf.

Figure 2: RAPD profiles of parents and F2 populations, used for screening as indicated in table 3.2.

Figure 3: STMS profile of 25 accession of Vigna indicating the polymorphism existing for the STMS markers, generated with the primer pairs AB128135. The numbers indicated in each lane correspond to the sequence of accessions as indicated in table 3.1. The lane marked M1 and M2 is the DNA molecular weight standard 100-base pair ladder of MBI. Fermentas, (USA)

Figure 4: STMS profile of 25 accession of Vigna indicating the polymorphism existing for the STMS markers, generated with the primer pairs VM27. The numbers indicated in each lane correspond to the sequence of accessions as indicated in table 3.1. The lane marked M1 and M2 is the DNA molecular weight standard 100-base pair ladder of MBI. Fermentas, (USA)

Figure 5: STMS profile of 25 accession of Vigna indicating the polymorphism existing for the STMS markers, generated with the primer pairs MB 122A. The numbers indicated in each lane correspond to the sequence of accessions as indicated in table 3.1. The lane marked M1 and M2 is the DNA molecular weight standard 100-base pair ladder of MBI. Fermentas, (USA)

Figure 6: Dendrogram based on Nei’s (1972) Genetic distance: Method = UPGMA. Modified from NEIGHBOR procedure of PHYLIP Version 3.5 (Group I)
Figure 7: Dendrogram based on Nei's (1972) Genetic distance: Method = UPGMA Modified from NEIGHBOR procedure of PHYLIP Version 3.5 (Group II)

Figure 8: Dendrogram based on Nei's (1972) Genetic distance: Method = UPGMA Modified from NEIGHBOR procedure of PHYLIP Version 3.5 (Group III)

Figure 9 Dendrogram based on Nei's (1972) Genetic distance: Method = UPGMA Modified from NEIGHBOR procedure of PHYLIP Version 3.5

Figure 10: STS profile of 25 accession of Vigna indicating the screening of STS markers. The lane marked M1 and M2 is the DNA molecular weight standard 100-base pair ladder of MBI. Fermentas, (USA)

Figure 11: Gene trees showing minimum evolution and neighbour joining tree for locus BV16 (a) ME, (b)NJ

Figure 12: Gene trees showing neighbour joining minimum evolution and maximum parsimony tree for locus OLM1 (a-f)

Figure 13: Gene trees showing neighbour joining and minimum evolution tree for locus SHMT (a and b)

Figure 14: Gene trees showing neighbour joining, minimum evolution and maximum parsimony tree for locus SUSY (a-c)

Figure 15: Gene trees showing neighbour joining minimum evolution and maximum parsimony tree for locus UDPGDB3 (a-c)

Figure 16: Multiple Sequence Alignment for locus UDPGDB3 using Clustal X (1.83) showing insertions and deletions of single nucleotide.

Figure 17: Multiple Sequence Alignment for locus BV16 using Clustal X (1.83) showing insertions and deletions of single nucleotide.
Figure 18: Multiple Sequence Alignment for locus OLM1 using Clustal X (1.83) showing insertions and deletions of single nucleotide.

Figure 19: Multiple Sequence Alignment for locus SUSY using Clustal X (1.83) showing insertions and deletions of single nucleotide

Figure 20: Multiple Sequence Alignment for locus SHMT using Clustal X (1.83) showing insertions and deletions of single nucleotide