Chapter 1

Preliminaries

1.1 Introduction

This chapter is devoted to recapitulating some of the basic definitions and results in categories which are required for the development of the thesis.

Definition 1.1.1: A category is a class \mathcal{A}, together with a class \mathcal{M} which is a disjoint union of the form

$$\mathcal{M} = \bigcup \{[(X, A), (Y, B)] \mid [(X, A), (Y, B)] \in \mathcal{F} \times \mathcal{F} \}$$

where each $[A, B]_{\mathcal{A}}$ is a set. Furthermore, for each triple (A, B, C) of members of \mathcal{A}, there is a function from $[B, C]_{\mathcal{A}} \times [A, B]_{\mathcal{A}}$ to $[A, C]_{\mathcal{A}}$ mapping (β, α) into $\beta \alpha$ (called the composition of β by α) subject to the following two axioms:

(i) **Associativity**: whenever the composition make sense we have

$$(\gamma \beta) \alpha = \gamma(\beta \alpha).$$
(ii) **Existence of identities:** For each \(A \in \mathcal{A} \), we have an element \(1_A \in [A,A]_{\mathcal{A}} \) such that \(1_A \alpha = \alpha \) and \(\beta 1_A = \beta \) whenever the composition make sense.

Remark 1.1.2: When there is no danger of confusion \([A,B]_{\mathcal{A}}\) is simply written as \([A,B]\). The members of \(\mathcal{A} \) are called objects and the members of \(\mathcal{M} \) are called morphisms or (arrows). If \(\alpha \in [A,B] \), we shall write \(\alpha : A \to B \) or sometimes \(A \xrightarrow{\alpha} B \). It is clear that the identity \(1_A \) in \(A \) is unique.

Example 1.1.3:

1. **The category of sets:** The category \(\mathcal{F} \) whose class of objects is the class of all sets, where \([A,B]_{\mathcal{F}}\) is the class of all functions from \(A \) to \(B \).

2. **The category of topological spaces \(\mathcal{F} \):** Objects are topological spaces where \([A,B]_{\mathcal{F}}\) is the set of all continuous functions from \(A \) to \(B \).

3. **The category \(\mathcal{F}_0 \) of sets with base points:** It is the category whose objects are ordered pairs \((A,a)\) where \(A \) is a set and \(a \in A \). A morphism from \((A,a)\) to \((B,b)\) is a function \(f \) from \(A \) to \(B \) such that \(f(a) = b \).

Definition 1.1.4: A category \(\mathcal{A}' \) is called a **subcategory** of a category \(\mathcal{A} \) if

1. \(\mathcal{A}' \subset \mathcal{A} \).

2. \([A,B]_{\mathcal{A}'} \subset [A,B]_{\mathcal{A}}\) for all \(A,B \in \mathcal{A}' \).

3. The composition of any two morphisms in \(\mathcal{A}' \) is the same as their composition in \(\mathcal{A} \).
4. 1_A is the same in \mathcal{A}' as in \mathcal{A} for all $A \in \mathcal{A}'$.

If furthermore $[A, B]_{\mathcal{A}'} = [A, B]_{\mathcal{A}}$ for all $(A, B) \in \mathcal{A}' \times \mathcal{A}'$ then we say that \mathcal{A}' is a full subcategory of \mathcal{A}.

Definition 1.1.5: The *dual category* of a category \mathcal{A} denoted by \mathcal{A}^* has the same class of objects as \mathcal{A}, and is such that $[A, B]_{\mathcal{A}^*} = [B, A]_{\mathcal{A}}$ and the composition $\beta \alpha$ in \mathcal{A}^* is defined as the compositions $\alpha \beta$ in \mathcal{A}.

Definition 1.1.6: A morphism $\theta : A \to B$ is called a *coretraction* if there is a morphism $\theta' : B \to A$ such that $\theta' \theta = 1_A$. In this case A is called a retract of B. Dually, a morphism $\theta : A \to B$ is called a *retraction* if there is a morphism $\theta'' : B \to A$ such that $\theta \theta'' = 1_B$.

Proposition 1.1.7. If $\theta : A \to B$ and $\pi : B \to C$ are coretractions (retractions) then $\pi \theta$ is also a coretraction (retraction). On the other hand if $\pi \theta$ is a coretraction (retraction), then θ is a coretraction (π is a retraction) but not necessarily π (not necessarily θ).

Definition 1.1.8: A morphism $\theta : A \to B$ is called an *isomorphism* if it is both a retraction and a coretraction. We say that “A is isomorphic to B” if there is an isomorphism from A to B. Then the relation “is isomorphic to” is an equivalence relation.

Definition 1.1.9: A morphism $\alpha \in [A, B]$ is called a *monomorphism* if $\alpha f = \alpha g$ implies that $f = g$ for all $f, g : C \to A$. Similarly, if $f \alpha = g \alpha$ implies that $f = g$ for all $f, g : B \to C$ then α is called an *epimorphism*.
Proposition 1.1.10. If α and β are monomorphisms (respectively epimorphisms) and if $\beta \alpha$ is defined then $\beta \alpha$ is also a monomorphism (respectively epimorphism). On the other hand, if $\beta \alpha$ is a monomorphism (respectively epimorphism), then α is a monomorphism (β is an epimorphism) but not necessarily β (respectively α).

Proposition 1.1.11. Every coretraction (respectively retraction) is a monomorphism (respectively epimorphism). However, the converse is not true.

Proposition 1.1.12. In the category of sets and sets with base point, a morphism is a monomorphism (respectively epimorphism) if and only if it is a one-one function (onto function).

Definition 1.1.13: A category is said to be balanced if every morphism which is both a monomorphism and an epimorphism is also an isomorphism.

Example 1.1.14: The category of sets (and sets with base point) is balanced.

Proposition 1.1.15. If $\alpha : A \to B$ is a coretraction (retraction) and is also an epimorphism (respectively monomorphism) then it is an isomorphism.

Definition 1.1.16: If $\alpha : A' \to A$ is a monomorphism, then A' is called subobject of A. If $\alpha_1 : A_1 \to A$ and $\alpha_2 : A_2 \to A$ are monomorphisms, then we write $\alpha_1 \leq \alpha_2$ if there is a morphism $\gamma : A_1 \to A_2$ such that $\alpha_2 \gamma = \alpha_1$. If also $\alpha_2 \leq \alpha_1$, then we say that A_1 and A_2 are isomorphic subobjects of A. If $\alpha : A \to A'$ is an epimorphism, then A' is said to be a quotient object of A. If $\alpha_1 : A \to A_1$ and $\alpha_2 : A \to A_2$ are epimorphisms, we write $\alpha_1 \leq \alpha_2$ if there is a morphism $\gamma : A_2 \to A_1$ such that $\gamma \alpha_2 = \alpha_1$. If also $\alpha_2 \leq \alpha_1$ then
we say that A_1 and A_2 are isomorphic quotient objects of A.

Definition 1.1.17: Given two morphisms $\alpha, \beta : A \to B$, we say that $u : K \to A$ is an equalizer for α and β if

(i) $\alpha u = \beta u$ and

(ii) whenever $u' : K' \to A$ is such that $\alpha u' = \beta u'$, then there is a unique morphism $\gamma : K' \to K$ such that $u\gamma = u'$.

Proposition 1.1.18. If u is an equalizer for α and β then u is a monomorphism. Any two equalizers for α and β are isomorphic subobjects of A.

Remark 1.1.19: We shall denote the equalizer of α and β as $\text{Equ}(\alpha, \beta)$. Then we say that $B \to \text{coequ}(\alpha, \beta)$ is the coequalizer of α and β if it is the equalizer of these two morphisms in the dual category.

Definition 1.1.20: Let $\{u_i : A_i \to A\}_{i \in I}$ be a family of subobjects of A.

A morphism $u : A' \to A$ is called the intersection of the family if

(i) for each $i \in I$, we can write $u = u_i \gamma_i$ for some morphism $\gamma_i : A' \to A_i$.

(ii) if for every morphism $B \to A$ which factors through each u_i, factors uniquely through u.

If the intersection exists for every set of subobjects of every object in \mathcal{A}, then \mathcal{A} is said to have intersections.

Definition 1.1.21: A morphism $u : I \to B$ is called the image of the morphism $f : A \to B$ if $f = uf'$ for some $f' : A \to I$, and if u precedes any other
morphism into B with the same property. If every morphism in a category \mathcal{A} has an image, then \mathcal{A} is said to have images.

Definition 1.1.22: Given two morphism $\alpha_1 : A_1 \to A$ and $\alpha_2 : A_2 \to A$ a commutative diagram is called a *pullback* for α_1 and α_2 if for every pair of morphism $\beta'_1 : P' \to A_1$ and $\beta'_2 : P' \to A_2$ such that $\alpha_1 \beta'_1 = \alpha_2 \beta'_2$, there exists a unique morphism $\gamma : P' \to P$ such that $\beta'_1 = \beta_1 \gamma$ and $\beta'_2 = \beta_2 \gamma$.

If $f : A \to B$ and B' is a subobject of B, then the *inverse image* of B' by f is the pullback diagram given below:

![Pullback Diagram](image)

1.2 Functors

Definition 1.2.1: Let \mathcal{A} and \mathcal{B} be categories. A *covariant functor* $T : \mathcal{A} \to \mathcal{B}$ is an assignment of an object $T(A) \in \mathcal{B}$ to each object $A \in \mathcal{A}$ and a morphism $T(\alpha) : T(A) \to T(B)$ to each morphism $\alpha : A \to B$ in \mathcal{A}, subject to the following conditions:

(i) **Preservation of Composition:** If $\alpha' \alpha$ is defined in \mathcal{A}, then
\[T(\alpha' \alpha) = T(\alpha') T(\alpha). \]

(ii) **Preservation of Identities:** For each \(A \in \mathcal{A} \), we have \(T(1_A) = 1_{T(A)} \).

Replacing the condition \(\alpha : A \to B \) implies that \(T(\alpha) : T(A) \to T(B) \) and \(T(\alpha' \alpha) = T(\alpha') T(\alpha) \) by the condition \(\alpha : A \to B \) implies that \(T(\alpha) : T(B) \to T(A) \) and \(T(\alpha' \alpha) = T(\alpha) T(\alpha') \) in the above, we obtain the definition of a **contra-variant functor** from \(\mathcal{A} \) to \(\mathcal{B} \).

Definition 1.2.2: Let \(\mathcal{A} \) be a category and \(A \in \mathcal{A} \). Then we have a covariant morphism functor \(H^A : \mathcal{A} \to \mathcal{B} \) and a contra-variant morphism functor \(H_A : \mathcal{A} \to \mathcal{B} \) defined as follows:

If \(B \in \mathcal{B} \) and \(\alpha : B \to C \), then

(i) \(H^A(B) = [A, B] \) and \(H^A(\alpha) : [A, B] \to [A, C] \) is given by the rule \((H^A(\alpha))(x) = ax \).

(ii) \(H_A(B) = [B, A] \) and \(H_A(\alpha) : [C, A] \to [B, A] \) is given by the rule \((H_A(\alpha))(x) = x\alpha \).

Definition 1.2.3: Let \(T : \mathcal{A} \to \mathcal{B} \) be a covariant functor. Then \(T \) is called a **monofunctor (epifunctor)** if \(T(\alpha) \) is a monomorphism (epimorphism) in \(\mathcal{B} \) whenever \(\alpha \) is a monomorphism (epimorphism) in \(\mathcal{A} \).

If \(\mathcal{A} \) and \(\mathcal{B} \) are categories with zero objects, then \(T \) is said to be **zero preserving** if \(T(O) \) is a zero object in \(\mathcal{B} \), for \(O \) a zero object in \(\mathcal{A} \), \(T \) is said to be **kernel preserving** if \(T(u) \) is the kernel of \(T(\alpha) \) when \(u : k \to A \) is the kernel of \(\alpha : A \to B \).

The functor \(T \) is called a **faithful functor** if for every pair of objects \(A, B \in \mathcal{A} \),
the function \([A,B] \to [T(A), T(B)]\) induced by \(T\) is univalent.

A faithful functor which takes distinct objects into distinct objects is called an imbedding.

The functor \(T\) is said to be full if for every pair of objects \(A,B \in \mathcal{A}\), the function \([A,B] \to [T(A), T(B)]\) induced by \(T\) is onto and \(T\) is said to be representative if for every \(B \in \mathcal{B}\), there is an object \(A \in \mathcal{A}\) such that \(T(A)\) and \(B\) are isomorphic. A full, representative, faithful functor is called an equivalence.

Definition 1.2.4: An object \(P\) in a category \(\mathcal{A}\) is said to be Projective if for every diagram

\[
\begin{array}{ccc}
A & \rightarrow & A'' \\
\downarrow & & \downarrow \\
A' & \rightarrow & A''
\end{array}
\]

with \(A \rightarrow A''\) an epimorphism, there is a morphism \(P \rightarrow A\) making the diagram commutative. The category \(\mathcal{A}\) is said to have projectives if for each \(A \in \mathcal{A}\), there is an epimorphism \(P \rightarrow A\) with \(P\) projective.

Proposition 1.2.5. In the category of sets, every set is projective.

Proposition 1.2.6. In the category of sets, every nonempty set is injective.

Definition 1.2.7: An object \(U\) in a category \(\mathcal{A}\) is called a generator for \(A\), if for every pair of distinct morphisms \(\alpha, \beta : A \rightarrow B\), there is a morphism \(u : U \rightarrow A\) such that \(\alpha u \neq \beta u\). An object \(C\) is called a cogenerator for \(\mathcal{A}\) if it is a generator for the dual category.
Proposition 1.2.8. For the category of sets, any one element set is a generator and any two element set is a cogenerator.

Most of the definitions in general category are taken from [3]. They are defined in this thesis as applicable to the category of fuzzy groups.