CONTENTS

CHAPTER I INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Higher secondary education</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Characteristics of higher secondary education</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Aims and objectives of physics education at higher secondary level</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Conventional method of teaching and learning of physics</td>
<td>5</td>
</tr>
<tr>
<td>1.6 Need and significance of the study</td>
<td>6</td>
</tr>
<tr>
<td>1.7 Scope of the study</td>
<td>8</td>
</tr>
<tr>
<td>1.8 Statement of the problem</td>
<td>9</td>
</tr>
<tr>
<td>1.9 Definition of key terms</td>
<td>10</td>
</tr>
<tr>
<td>1.10 Objectives</td>
<td>11</td>
</tr>
<tr>
<td>1.11 Hypotheses</td>
<td>12</td>
</tr>
<tr>
<td>1.12 Organization of the report</td>
<td>15</td>
</tr>
</tbody>
</table>

CHAPTER II CONCEPTUAL FRAMEWORK

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>16</td>
</tr>
<tr>
<td>2.2 Conceptual process</td>
<td>16</td>
</tr>
<tr>
<td>2.3 Metacognition</td>
<td>17</td>
</tr>
</tbody>
</table>
2.4 Models of metacognition 19
2.5 Teaching and learning of Physics in a metacognitive environment 27
2.6 Implementation of metacognitive strategies 29
 Development of a metacognitive model on enhancing achievement in physics at higher secondary level – A model generation 42
2.8 Conclusion 50

CHAPTER III REVIEW OF RELATED LITERATURE

3.1 Introduction 51
3.2 Studies conducted in India 52
3.3 Studies conducted in abroad 54
3.4 Studies conducted about intervening variables 70
3.5 Critical summary 75
3.6 Insights gained from the reviews 76
3.7 Conclusion 77

CHAPTER IV DESIGN OF THE STUDY

4.1 Introduction 78
4.2 Method selected for the study 78
4.3 Research design 78
4.4 Experimental design 80
4.5 Variables in the study 82
4.6 Threats to internal validity 83
4.7 Threats to external validity 85
4.8 Sample of the study 86
4.9 Assumptions of the study 89
4.10 Delimitations 89
4.11 Lesson transcripts for the experimental group 89
4.12 Construction and validation of tools 102
4.13 Experimentation 112
4.14 Homogeneity of pre-test scores in the experimental group 114
4.15 Statistical tools used 115
4.16 Conclusion 116

CHAPTER V ANALYSIS AND INTERPRETATION
5.1 Introduction 117
5.2 Scheme of analysis 117
5.3 Conclusion 208

CHAPTER VI FINDINGS, DISCUSSION, SUMMARY AND CONCLUSION
6.1 Introduction 209
6.2 Findings of the study 209
6.3 Discussion 223
6.4 Summary 228
6.5 Educational Implications of the study 230
6.6 Recommendation for policy making 231
6.7 Suggestions for further research 233
6.8 Conclusion 234

REFERENCES

APPENDICES

APPENDIX A Achievement test
APPENDIX B Metacognitive awareness inventory
APPENDIX C Student attitude towards physics
APPENDIX D Home learning environment inventory
APPENDIX E Study habit inventory
APPENDIX F Statistical tools
APPENDIX H Articles published during the research period
APPENDIX I No Objection Certificate - Directorate of School Education