CHAPTER II

Λ-\textit{r}-closed sets and Λ-\textit{r}-open sets

Maki [21] introduced the concept of Λ-sets in topological spaces. Following this, Navaneethakrishnan defined the notion of Λ-\textit{r}-sets. In this chapter, the concepts of Λ-\textit{r}-closed sets and Λ-\textit{r}-open sets are introduced and their basic properties are investigated.

Definition 2.1.

Let A be a subset of a space X. Then A is called Λ-\textit{r}-closed if $A = S \cap C$, where S is a Λ-\textit{r}-set and C is a closed set. A is called Λ-\textit{r}-open if $X \setminus A$ is Λ-\textit{r}-closed. A is called Λ-\textit{r}-clopen if A is both Λ-\textit{r}-open and Λ-\textit{r}-closed.

Let \(\Lambda_r O(X, \tau) \) denote the family of all Λ-\textit{r}-open sets in \((X, \tau)\), \(\Lambda_r C(X, \tau) \) denote the family of all Λ-\textit{r}-closed sets in \((X, \tau)\) and \(\Lambda_r CO(X, \tau) \) denote the family of all Λ-\textit{r}-clopen sets in \((X, \tau)\).

Proposition 2.2.

(i) Every Λ-\textit{r}-set is Λ-\textit{r}-closed.

(ii) Every closed set is Λ-\textit{r}-closed.

Proof.

Let A be a subset of a space X. Suppose A is a Λ-\textit{r}-set. Since $A = A \cap X$, by Definition 2.1, A is Λ-\textit{r}-closed. This proves (i).

Let A be a closed subset of a space X. By Lemma 1.9(ii) and Definition 1.10, it follows that X is a Λ-\textit{r}-set. Since $A = X \cap A$, by Definition 2.1, A is Λ-\textit{r}-closed. This proves (ii).

Proposition 2.3.

For a subset A of a space X, the following conditions are equivalent:

(i) A is Λ-\textit{r}-closed.
(ii) \(A = L \cap \text{cl}(A) \) for some \(\Lambda_r \)-set \(L \).

(iii) \(A = A_r^\Lambda \cap \text{cl}(A) \).

Proof.

Suppose \(A \) is \(\Lambda_r \)-closed. Then by Definition 2.1, there exists a \(\Lambda_r \)-set \(L \) and a closed set \(C \) such that \(A = L \cap C \). Since \(A \subseteq C \), \(\text{cl}(A) \subseteq \text{cl}(C) = C \). Therefore \(A = L \cap C \supseteq L \cap \text{cl}(A) \supseteq A \). Hence \(A = L \cap \text{cl}(A) \). **This proves (i) \(\Rightarrow \) (ii).**

Suppose \(A = L \cap \text{cl}(A) \) for some \(\Lambda_r \)-set \(L \). Since \(A \subseteq L \), by Lemma 1.9(v), we have \(A_r^\Lambda \subseteq L_r^\Lambda \) and so by Definition 1.10, \(A_r^\Lambda \subseteq L \). Then by Lemma 1.9(iii), \(A = L \cap \text{cl}(A) \supseteq A_r^\Lambda \cap \text{cl}(A) \supseteq A \) and so \(A = A_r^\Lambda \cap \text{cl}(A) \). **This proves (ii) \(\Rightarrow \) (iii).**

Suppose \(A = A_r^\Lambda \cap \text{cl}(A) \). Then by Lemma 1.9(iv), \((A_r^\Lambda)^\Lambda = A_r^\Lambda \) and so by Definition 1.10, \(A_r^\Lambda \) is a \(\Lambda_r \)-set. Thus \(A \) is an intersection of \(\Lambda_r \)-set \(A_r^\Lambda \) and the closed set \(\text{cl}(A) \) and so by Definition 2.1, \(A \) is \(\Lambda_r \)-closed. **This proves (iii) \(\Rightarrow \) (i).** \(\square \)

Theorem 2.4.

Let \(X \) be a space and \(A \subseteq X \). Then \(A \) is \(\Lambda_r \)-open if and only if \(A = T \cup C \) where \(T \) is a \(V_r \)-set and \(C \) is an open set.

Proof.

Suppose \(A \) is \(\Lambda_r \)-open. Then by Definition 2.1, \(X \setminus A \) is \(\Lambda_r \)-closed and so there exists a \(\Lambda_r \)-set \(S \) and a closed set \(D \) such that \(X \setminus A = S \cap D \). By Lemma 1.13, \(X \setminus S \) is a \(V_r \)-set. Thus \(A = X \setminus (S \cap D) = (X \setminus S) \cup (X \setminus D) \) is an union of \(V_r \)-set \(X \setminus S \) and the open set \(X \setminus D \).

For the converse, suppose \(A = T \cup C \) where \(T \) is a \(V_r \)-set and \(C \) is an open set. By Lemma 1.13, \(X \setminus T \) is a \(\Lambda_r \)-set. Thus \(X \setminus A = (X \setminus T) \cap (X \setminus C) \) is the intersection of \(\Lambda_r \)-set \(X \setminus T \) and the closed set \(X \setminus C \) and so by Definition 2.1, \(X \setminus A \) is a \(\Lambda_r \)-closed set which implies \(A \) is \(\Lambda_r \)-open. \(\square \)
Proposition 2.5.

(i) Every \(V_r \)-set is \(\Lambda_r \)-open.

(ii) Every open set is \(\Lambda_r \)-open.

Proof.

Let \(A \) be a subset of a space \(X \). Suppose \(A \) is a \(V_r \)-set. Since \(A = A \cup \emptyset \), by Theorem 2.4, \(A \) is \(\Lambda_r \)-open. This proves (i).

Let \(A \) be an open set in \(X \). Then \(X \setminus A \) is closed. By Proposition 2.2(ii), \(X \setminus A \) is \(\Lambda_r \)-closed and so \(A \) is \(\Lambda_r \)-open. This proves (ii). \(\square \)

Proposition 2.6.

For a subset \(A \) of a space \(X \), the following conditions are equivalent:

(i) \(A \) is \(\Lambda_r \)-open.

(ii) \(A = T \cup \text{int}(A) \) for some \(V_r \)-set \(T \).

(iii) \(A = A^V_r \cup \text{int}(A) \).

Proof.

Suppose \(A \) is \(\Lambda_r \)-open. Then by Theorem 2.4, there exists a \(V_r \)-set \(T \) and an open set \(C \) such that \(A = T \cup C \). Since \(C \subseteq A \), \(C = \text{int}(C) \subseteq \text{int}(A) \). Then \(A = T \cup C \subseteq T \cup \text{int}(A) \subseteq A \) which implies that \(A = T \cup \text{int}(A) \). This proves (i) \(\Rightarrow \) (ii).

Suppose \(A = T \cup \text{int}(A) \) for some \(V_r \)-set \(T \). Since \(T \subseteq A \), by Lemma 1.9(v), \(T^V_r \subseteq A^V_r \) and so by Definition 1.10, \(T \subseteq A^V_r \). Then by applying Lemma 1.9(iii), \(A = T \cup \text{int}(A) \subseteq A^V_r \cup \text{int}(A) \subseteq A \) which implies that \(A = A^V_r \cup \text{int}(A) \). This proves (ii) \(\Rightarrow \) (iii).

Suppose \(A = A^V_r \cup \text{int}(A) \). By Lemma 1.9(iv), \((A^V_r)^V_r = A^V_r \) and so by Definition 1.10, \(A^V_r \) is a \(V_r \)-set. Thus \(A \) is an union of \(V_r \)-set \(A^V_r \) and an open set \(\text{int}(A) \) and so by Theorem 2.4, \(A \) is \(\Lambda_r \)-open. This proves (iii) \(\Rightarrow \) (i). \(\square \)
Theorem 2.7.

(i) Every Λ_r-closed set is λ-closed.

(ii) Every Λ_r-closed set is (Λ,α)-closed.

(iii) Every Λ_r-closed set is λ-semi-closed.

Proof.

Let S be a Λ_r-closed set. Then by Definition 2.1, there exists a Λ_r-set T and a closed set C such that $S = T \cap C$. By Lemma 1.11(ii), T is a Λ-set and by Definition 1.3, it follows that S is λ-closed. This proves (i).

Let S be a Λ_r-closed set. Then by Definition 2.1, there exists a Λ_r-set T and a closed set C such that $S = T \cap C$. Since every regular-open set is α-open, by using Definitions 1.10 and 1.6, every Λ_r-set is a Λ_α-set and so T is a Λ_α-set. Since every closed set is α-closed, C is a α-closed set. Therefore by Definition 1.6, S is (Λ,α)-closed. This proves (ii).

Let S be a Λ_r-closed set. Then by Definition 2.1, there exists a Λ_r-set T and a closed set C such that $S = T \cap C$. Since every regular-open set is semi-open, from Definitions 1.10 and 1.7, every Λ_r-set is a Λ_s-set and so T is a Λ_s-set. Since every closed set is semi-closed, C is a semi-closed set and so by Definition 1.7, S is λ-semi-closed. This proves (iii).

□

It follows from Theorem 2.7(i) and Proposition 2.5(ii) that the class of Λ_r-open sets lies between the topology and the class of λ-open sets. However, the inclusion is proper as shown in the next example.

Example 2.8.

If $X = \{a,b,c,d\}$ and $\tau = \{\emptyset,\{a\},\{b\},\{a,b\},X\}$, then

(i) $\{a,b\}$ is a λ-closed set in (X,τ) but it is not a Λ_r-closed in (X,τ).

(ii) $\{d\}$ is a (Λ,α)-closed set in (X,τ) but it is not a Λ_r-closed in (X,τ).
(iii) \{a,d\} is a \(\lambda\)-semi-closed set in \((X, \tau)\) but it is not a \(\Lambda_r\)-closed in \((X, \tau)\).

Example 2.9 shows that the concepts of \(\Lambda_r\)-closed sets and \((\Lambda, \delta)\)-closed sets defined in Definition 1.5 are independent to each other.

Example 2.9.

If \(X = \{a,b,c,d\}\) and \(\tau = \{\emptyset, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}, X\}\), then \{b,c,d\} is a \(\Lambda_r\)-closed set in \((X, \tau)\) but it is not a \((\Lambda, \delta)\)-closed set in \((X, \tau)\).

If \(X = \{a,b,c,d\}\) and \(\tau = \{\emptyset, \{a\}, \{b,c\}, \{a,b,c\}, X\}\), then \{a,b,c\} is a \((\Lambda, \delta)\)-closed set in \((X, \tau)\) but it is not a \(\Lambda_r\)-closed set in \((X, \tau)\).

The above discussions lead to the following implications but none of the reverse implications is true.

\[
\begin{align*}
\Lambda_r\text{-set} & \Rightarrow \Lambda\text{-set} \Rightarrow \Lambda\alpha\text{-set} \Rightarrow \Lambda_s\text{-set} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\Lambda_r\text{-closed} & \Rightarrow \lambda\text{-closed} \Rightarrow (\Lambda, \alpha)\text{-closed} \Rightarrow \lambda\text{-semi-closed}
\end{align*}
\]

Definition 2.10.

Let \(X\) be a space and \(A \subseteq X\). Then a point \(x \in X\) is called a \(\Lambda_r\)-cluster point of \(A\) if for every \(\Lambda_r\)-open set \(U\) containing \(x\), \(A \cap U \neq \emptyset\). The collection of all \(\Lambda_r\)-cluster points of \(A\) is called the \(\Lambda_r\)-closure of \(A\) and is denoted by \(\Lambda_r-cl(A)\).

Let \(X\) be a space and \(A, B\) and \(A_k\) where \(k \in I\), subsets of \(X\). Then we have the following properties.

Proposition 2.11.

(i) \(A \subseteq \Lambda_r-cl(A)\).

(ii) \(\Lambda_r-cl(A) = \cap \{F: A \subseteq F\ and\ F\ is\ \Lambda_r\text{-closed}\}\).

(iii) If \(A \subseteq B\), then \(\Lambda_r-cl(A) \subseteq \Lambda_r-cl(B)\).

(iv) \(A\) is \(\Lambda_r\)-closed if and only if \(A = \Lambda_r-cl(A)\).

(v) \(\Lambda_r-cl(A)\) is \(\Lambda_r\)-closed.

(vi) \(\Lambda_r-cl(A) \subseteq cl(A)\).
Proof.

If \(x \notin \Lambda_r-cl(A) \), then by Definition 2.10, \(x \) is not a \(\Lambda_r \)-cluster point of \(A \) and so there exists a \(\Lambda_r \)-open set \(U \) containing \(x \) such that \(A \cap U = \emptyset \) which implies that \(x \notin A \). \textbf{This proves (i).}

If \(x \notin \Lambda_r-cl(A) \), then by Definition 2.10, \(x \) is not a \(\Lambda_r \)-cluster point of \(A \) and so there exists a \(\Lambda_r \)-open set \(U \) containing \(x \) such that \(A \cap U = \emptyset \). Take \(F = X \setminus U \). By Definition 2.1, \(F \) is \(\Lambda_r \)-closed. Then we obtain that \(A \subseteq F \) and \(x \notin F \) which implies that \(x \notin \cap \{ F : A \subseteq F \text{ and } F \text{ is } \Lambda_r \text{-closed} \} \). On the other hand, if \(x \notin \cap \{ F : A \subseteq F \text{ and } F \text{ is } \Lambda_r \text{-closed} \} \), then there exists a \(\Lambda_r \)-closed set \(F \supseteq A \) such that \(x \notin F \) which implies that \(x \in X \setminus F \), \(X \setminus F \) is \(\Lambda_r \)-open and \((X \setminus F) \cap A = \emptyset \). By Definition 2.10, \(x \) is not a \(\Lambda_r \)-cluster point of \(A \) and so \(x \notin \Lambda_r-cl(A) \). \textbf{This proves (ii).}

If \(x \notin \Lambda_r-cl(B) \), then by Definition 2.10, there exists a \(\Lambda_r \)-open set \(U \) containing \(x \) such that \(B \cap U = \emptyset \). Since \(A \subseteq B \), \(A \cap U = \emptyset \) which implies that \(x \) is not a \(\Lambda_r \)-cluster point of \(A \) and so \(x \notin \Lambda_r-cl(A) \). \textbf{This proves (iii).}

Suppose \(A \) is \(\Lambda_r \)-closed. If \(x \notin A \), then \(x \in X \setminus A \) and \(X \setminus A \) is \(\Lambda_r \)-open. Take \(X \setminus A = U \). Then \(U \) is a \(\Lambda_r \)-open set containing \(x \) and \(A \cap U = \emptyset \) and hence \(x \notin \Lambda_r-cl(A) \). By using (i), it follows that \(A = \Lambda_r-cl(A) \). Conversely, suppose that \(A = \Lambda_r-cl(A) \). By using (ii), we have \(A = \cap \{ F : A \subseteq F \text{ and } F \text{ is } \Lambda_r \text{-closed} \} \) and by using Definition 1.10, it follows that \(A \) is \(\Lambda_r \)-closed. \textbf{This proves (iv).}

By (i) and (iii), we have \(\Lambda_r-cl(A) \subseteq \Lambda_r-cl (\Lambda_r-cl(A)) \). If \(x \in \Lambda_r-cl(\Lambda_r-cl(A)) \), then by Definition 2.10, \(x \) is a \(\Lambda_r \)-cluster point of \(\Lambda_r-cl(A) \) which implies that for every \(\Lambda_r \)-open set \(U \) containing \(x \), \((\Lambda_r-cl(A)) \cap U \neq \emptyset \). Let \(y \in \Lambda_r-cl(A) \cap U \). Then \(y \) is a \(\Lambda_r \)-cluster point of \(A \). Therefore for every \(\Lambda_r \)-open set \(G \) containing \(y \), \(A \cap G \neq \emptyset \). Now \(U \) is \(\Lambda_r \)-open and \(y \in U \) which implies that \(A \cap U \neq \emptyset \) and so
Thus we have \(\Lambda r-cl(A) = \Lambda r-cl(\Lambda r-cl(A)) \). By (iv), \(\Lambda r-cl(A) \) is \(\Lambda r \)-closed. **This proves (v).**

If \(x \not\in cl(A) \), then there exists a closed set \(F \supseteq A \) such that \(x \not\in F \). By Proposition 2.2(ii), \(F \) is \(\Lambda r \)-closed and so by (ii), \(x \not\in \Lambda r-cl(A) \). **This proves (vi).** □

The following example shows that the reverse inclusion of Proposition 2.11(i) and Proposition 2.11(vi) need not be true.

Example 2.12.

If \(X = \{a,b,c\} \) and \(\tau = \{\emptyset,\{a\},\{b\},\{a,b\},X\} \), then we have

(i) \(\Lambda r-cl(\{a,b\}) = X \not\subset \{a,b\} \).

(ii) \(cl(\{a\}) = \{a,c\} \) and \(\Lambda r-cl(\{a\}) = \{a\} \) and so \(cl(\{a\}) \not\subset \Lambda r-cl(\{a\}) \).

Remark 2.13.

(i) \(X \) and \(\emptyset \) are both \(\Lambda r \)-open and \(\Lambda r \)-closed.

(ii) By Proposition 2.11(ii) and 2.11(v), \(\Lambda r-cl(A) \) is the smallest \(\Lambda r \)-closed set containing \(A \).

Proposition 2.14.

(i) If \(A_k \) is \(\Lambda r \)-closed for each \(k \in I \), then \(\bigcap_{k \in I} A_k \) is \(\Lambda r \)-closed.

(ii) If \(A_k \) is \(\Lambda r \)-open for each \(k \in I \), then \(\bigcup_{k \in I} A_k \) is \(\Lambda r \)-open.

Proof.

Suppose that \(A = \bigcap_{k \in I} A_k \) and \(x \in \Lambda r-cl(A) \). Then by Definition 2.10, for every \(\Lambda r \)-open set \(U \) containing \(x \), \(A \cap U \neq \emptyset \) which implies that \(A_k \cap U \neq \emptyset \) for each \(k \in I \). If \(x \not\in A \), then \(x \not\in A_i \) for some \(i \in I \). Since \(A_i \) is \(\Lambda r \)-closed, by Proposition 2.11(iv), \(A_i = \Lambda r-cl(A_i) \) and hence \(x \not\in \Lambda r-cl(A_i) \) which implies that there exists a \(\Lambda r \)-open set \(V \) containing \(x \) such that \(A_i \cap V = \emptyset \). This contradiction shows that \(x \in A \) and hence \(\Lambda r-cl(A) \subseteq A \). By using Proposition 2.11(i), it follows that \(A = \Lambda r-cl(A) \).
and so by Proposition 2.11(iv), A is \(\Lambda_r \)-closed, that is, \(\bigcap_{k \in I} A_k \) is \(\Lambda_r \)-closed. This proves (i).

Suppose \(A_k \) is \(\Lambda_r \)-open for each \(k \in I \). Then by Definition 2.1, \(X \setminus A_k \) is \(\Lambda_r \)-closed for each \(k \in I \). By (i), \(\bigcap_{k \in I} (X \setminus A_k) \) is \(\Lambda_r \)-closed which implies that \(X \setminus (\bigcup_{k \in I} A_k) \) is \(\Lambda_r \)-closed and so \(\bigcup_{k \in I} A_k \) is \(\Lambda_r \)-open. This proves (ii). □

Remark 2.15.

Consider a topological space \((X, \tau)\) where \(X = \{a, b, c, d\} \) and \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \). Then the \(\Lambda_r \)-open sets in \((X, \tau)\) are \(\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}, \{a, c, d\}, X \) and the \(\Lambda_r \)-closed sets in \((X, \tau)\) are \(\{a, c, d\}, \{c, d\}, \{a\}, \{b\}, \emptyset \). This example shows that union of \(\Lambda_r \)-closed sets is not \(\Lambda_r \)-closed and intersection of \(\Lambda_r \)-open sets is not \(\Lambda_r \)-open.

Definition 2.16.

Let \(X \) be a space and \(A \subseteq X \). Then \(\Lambda_r \)-kernal of \(A \), denoted by \(\Lambda_r \)-ker\((A) \) is defined by \(\Lambda_r \)-ker\((A) = \bigcap \{G : G \in \Lambda_r O(X, \tau) \text{ and } A \subseteq G\} \).

Let \(X \) be a space, \(A \) and \(B \) be subsets of \(X \) and \(x, y \in X \). Then we have the following properties.

Proposition 2.17.

(i) \(A \subseteq \Lambda_r \)-ker\((A) \).

(ii) If \(A \subseteq B \), then \(\Lambda_r \)-ker\((A) \subseteq \Lambda_r \text{ker}(B) \).

(iii) \(\Lambda_r \)-ker\((A) = \Lambda_r \text{ker}(\Lambda_r \text{ker}(A)) \).

(iv) \(y \in \Lambda_r \text{ker}(\{x\}) \) if and only if \(x \in \Lambda_r \text{cl}(\{y\}) \).

(v) \(\Lambda_r \text{ker}(A) = \{x : \Lambda_r \text{cl}(\{x\}) \cap A \neq \emptyset\} \).

Proof.

If \(x \notin \Lambda_r \text{ker}(A) \), then by Definition 2.16, there exists \(V \in \Lambda_r O(X, \tau) \) such that \(A \subseteq V \) and \(x \notin V \) and so \(x \notin A \). This proves (i).
If \(x \notin \Lambda_r\text{-ker}(B) \), then there exists \(G \in \Lambda_rO(X, \tau) \) such that \(B \subseteq G \) and \(x \notin G \). Since \(A \subseteq B \), \(A \subseteq G \) and hence \(x \notin \Lambda_r\text{-ker}(A) \). This proves (ii).

If \(x \in \Lambda_r\text{-ker}(\Lambda_r\text{-ker}(A)) \), then for every \(\Lambda_r \)-open set \(G \supseteq \Lambda_r\text{-ker}(A) \), \(x \in G \). By (i), \(A \subseteq \Lambda_r\text{-ker}(A) \). Thus for every \(\Lambda_r \)-open set \(G \supseteq A \), \(x \in G \) which implies that \(x \in \Lambda_r\text{-ker}(A) \) and so \(\Lambda_r\text{-ker}(\Lambda_r\text{-ker}(A)) \subseteq \Lambda_r\text{-ker}(A) \). By (i), we have \(\Lambda_r\text{-ker}(A) \subseteq \Lambda_r\text{-ker}(\Lambda_r\text{-ker}(A)) \). This proves (iii).

If \(y \notin \Lambda_r\text{-ker}(\{x\}) \), then by Definition 2.16, there exists a \(\Lambda_r \)-open set \(V \supseteq \{x\} \) such that \(y \notin V \) which implies that \(V \) is a \(\Lambda_r \)-open set containing \(x \) such that \(\{y\} \cap V = \emptyset \). By Definition 2.10, \(x \) is not a \(\Lambda_r \)-cluster point of \(\{y\} \) and so \(x \notin \Lambda_r\text{-cl}(\{y\}) \). On the other hand, suppose \(x \notin \Lambda_r\text{-cl}(\{y\}) \). By Definition 2.10, \(x \) is not a \(\Lambda_r \)-cluster point of \(\{y\} \) and so there exists a \(\Lambda_r \)-open set \(U \) containing \(x \) such that \(\{y\} \cap U = \emptyset \) which implies that \(U \) is a \(\Lambda_r \)-open set, \(U \supseteq \{x\} \) and \(y \notin U \). By Definition 2.16, \(y \notin \Lambda_r\text{-ker}(\{x\}) \). This proves (iv).

If \(x \in \Lambda_r\text{-ker}(A) \), then for every \(\Lambda_r \)-open set \(G \supseteq A \), \(x \in G \). If possible, let \(\Lambda_r\text{-cl}(\{x\}) \cap A = \emptyset \), then \(A \subseteq X \setminus (\Lambda_r\text{-cl}(\{x\})) \). Take \(V = X \setminus (\Lambda_r\text{-cl}(\{x\})) \). Then by using Proposition 2.11(v), \(V \) is a \(\Lambda_r \)-open set containing \(A \) and \(x \notin V \). By this contradiction, we have \(\Lambda_r\text{-cl}(\{x\}) \cap A \neq \emptyset \). Conversely, let \(x \in X \) such that \(\Lambda_r\text{-cl}(\{x\}) \cap A \neq \emptyset \). If \(y \in \Lambda_r\text{-cl}(\{x\}) \cap A \), then by Definition 2.10, \(y \) is a \(\Lambda_r \)-cluster point of \(\{x\} \) and so for every \(\Lambda_r \)-open set \(U \) containing \(y \), \(\{x\} \neq \emptyset \), that is, \(x \in U \). If \(x \notin \Lambda_r\text{-ker}(A) \), then by Definition 2.16, there exists a \(\Lambda_r \)-open set \(V \supseteq A \) such that \(x \notin V \). Since \(y \in A \), we have \(V \) is a \(\Lambda_r \)-open set containing \(y \) but \(x \notin V \). By this contradiction, we have \(x \in \Lambda_r\text{-ker}(A) \). This proves (v).

\[\square \]

Theorem 2.18.

For any points \(x \) and \(y \) in a space \(X \), \(\Lambda_r\text{-ker}(\{x\}) \neq \Lambda_r\text{-ker}(\{y\}) \) if and only if \(\Lambda_r\text{-cl}(\{x\}) \neq \Lambda_r\text{-cl}(\{y\}) \).
Proof.

Suppose $\Lambda_r\ker(\{x\}) \neq \Lambda_r\ker(\{y\})$. Then there exists a point z in X such that $z \in \Lambda_r\ker(\{x\})$ and $z \notin \Lambda_r\ker(\{y\})$. By Proposition 2.17(iv), $x \in \Lambda_r\cl(\{z\})$ and $y \notin \Lambda_r\cl(\{z\})$. By Remark 2.13(ii), $\Lambda_r\cl(\{x\}) \subseteq \Lambda_r\cl(\{z\})$ and $y \notin \Lambda_r\cl(\{z\})$ which implies that $y \notin \Lambda_r\cl(\{x\})$. This shows that $\Lambda_r\cl(\{x\}) \neq \Lambda_r\cl(\{y\})$.

For the converse, suppose $\Lambda_r\cl(\{x\}) \neq \Lambda_r\cl(\{y\})$. Then there exists a point z in X such that $z \in \Lambda_r\cl(\{x\})$ and $z \notin \Lambda_r\cl(\{y\})$ which implies that by Definition 2.10, there exists a Λ_r-open set V containing z such that $x \in V$ and $y \notin V$. Thus V is a Λ_r-open set containing x but not y. If $y \in \Lambda_r\ker(\{x\})$, then by Proposition 2.17(iv), $x \in \Lambda_r\cl(\{y\})$ and so by Definition 2.10, for every Λ_r-open set G containing x, $G \cap \{y\} \neq \emptyset$, that is, $y \in G$, a contradiction. Hence $y \notin \Lambda_r\ker(\{x\})$ and hence $\Lambda_r\ker(\{x\}) \neq \Lambda_r\ker(\{y\})$. □

Definition 2.19.

Let X be a space and $x \in X$. Then we define a subset $\Lambda_r\langle x \rangle$ of X as follows:

$$\Lambda_r\langle x \rangle = \Lambda_r\cl(\{x\}) \cap \Lambda_r\ker(\{x\}).$$

Proposition 2.20.

Let X be a space. Then the following properties hold:

(i) For each $x \in X$, $\Lambda_r\ker(\Lambda_r\langle x \rangle) = \Lambda_r\ker(\{x\})$.

(ii) For each $x \in X$, $\Lambda_r\cl(\Lambda_r\langle x \rangle) = \Lambda_r\cl(\{x\})$.

(iii) If U is a Λ_r-open set of X and $x \in U$, then $\Lambda_r\langle x \rangle \subseteq U$.

(iv) If F is a Λ_r-closed set of X and $x \in F$, then $\Lambda_r\langle x \rangle \subseteq F$.

Proof.

Let $x \in X$. By Proposition 2.11(i) and Proposition 2.17(i), $\{x\} \subseteq \Lambda_r\cl(\{x\})$ and $\{x\} \subseteq \Lambda_r\ker(\{x\})$ and so by Definition 2.19, it follows that $\{x\} \subseteq \Lambda_r\langle x \rangle$. By
Proposition 2.17(ii), \(\Lambda_r\ker(\langle x \rangle) \subseteq \Lambda_r\ker(\Lambda_r\langle x \rangle) \). For the reverse inclusion, if \(y \not\in \Lambda_r\ker(\langle x \rangle) \), then by Definition 2.16, there exists a \(\Lambda_r \)-open set \(V \) such that \(x \in V \) and \(y \not\in V \). By Definition 2.19, Definition 2.16 and Proposition 2.17, it follows that
\[\Lambda_r\langle x \rangle \subseteq \Lambda_r\ker(\langle x \rangle) \subseteq \Lambda_r\ker(V) = V \]
and so \(\Lambda_r\ker(\Lambda_r\langle x \rangle) \subseteq \Lambda_r\ker(V) = V \).

Since \(y \not\in V \), \(y \not\in \Lambda_r\ker(\Lambda_r\langle x \rangle) \). Consequently, \(\Lambda_r\ker(\Lambda_r\langle x \rangle) \subseteq \Lambda_r\ker(\langle x \rangle) \).

This proves (i).

By applying Proposition 2.11(i), Proposition 2.17(i) and Definition 2.19, we have \(\{x\} \subseteq \Lambda_r\langle x \rangle \). Then by Proposition 2.11(iii), \(\Lambda_r\cl(\{x\}) \subseteq \Lambda_r\cl(\Lambda_r\langle x \rangle) \). On the other hand, by Definition 2.19, \(\Lambda_r\langle x \rangle \subseteq \Lambda_r\cl(\{x\}) \) and so by Proposition 2.11(v) and Proposition 2.11(iv), \(\Lambda_r\cl(\Lambda_r\langle x \rangle) \subseteq \Lambda_r\cl(\Lambda_r\cl(\{x\})) = \Lambda_r\cl(\{x\}) \).

This proves (ii).

Suppose \(U \) is a \(\Lambda_r \)-open set and \(x \in U \). Then by Proposition 2.17(ii) and Definition 2.16, we have \(\Lambda_r\ker(\{x\}) \subseteq \Lambda_r\ker(U) = U \) and so \(\Lambda_r\langle x \rangle \subseteq U \). This proves (iii).

Suppose \(F \) is \(\Lambda_r \)-closed and \(x \in F \). By Remark 2.13(ii), \(x \in \Lambda_r\cl(\{x\}) \subseteq F \). By Definition 2.19, we have \(x \in \Lambda_r\langle x \rangle \) and \(\Lambda_r\langle x \rangle \subseteq \Lambda_r\cl(\{x\}) \) which implies that \(\Lambda_r\langle x \rangle \subseteq F \). This proves (iv).

\(\square \)

Definition 2.21.

Let \(X \) be a space. A point \(x \in X \) is said to be a \(\Lambda_r \)-interior point of \(A \) if there exists a \(\Lambda_r \)-open set \(U \) containing \(x \) such that \(U \subseteq A \).

The collection of all \(\Lambda_r \)-interior points of \(A \) is called \(\Lambda_r \)-interior of \(A \) and is denoted by \(\Lambda_r\text{-int}(A) \).
Theorem 2.22.

For subsets A, B of a space X, the following statements are true:

(i) $\text{int}(A) \subseteq \Lambda_r\text{-int}(A)$ and $\text{int}(A) = \Lambda_r\text{-int}(A)$ if A is open.

(ii) If $A \subseteq B$, then $\Lambda_r\text{-int}(A) \subseteq \Lambda_r\text{-int}(B)$.

(iii) $\Lambda_r\text{-int}(A) = \bigcup \{G : G \in \Lambda_rO(X, \tau) \text{ and } G \subseteq A\}$.

(iv) $\Lambda_r\text{-int}(\Lambda_r\text{-int}(A)) = \Lambda_r\text{-int}(A)$.

(v) $\Lambda_r\text{-cl}(X \setminus A) = X \setminus \Lambda_r\text{-int}(A)$.

(vi) A is Λ_r-open if and only if $A = \Lambda_r\text{-int}(A)$.

(vii) $\Lambda_r\text{-int}(A)$ is the largest Λ_r-open set contained in A.

(viii) $\Lambda_r\text{-int}(X \setminus A) = X \setminus \Lambda_r\text{-cl}(A)$.

Proof.

If $x \in \text{int}(A)$, then there exists a open set $G \subseteq A$ such that $x \in G$. By Proposition 2.5(ii), G is Λ_r-open and hence by Definition 2.21, $x \in \Lambda_r\text{-int}(A)$. This shows that $\text{int}(A) \subseteq \Lambda_r\text{-int}(A)$. If A is open, then $A = \text{int}(A)$. Since $\Lambda_r\text{-int}(A) \subseteq A$, it follows that $\Lambda_r\text{-int}(A) = \text{int}(A)$. This proves (i).

Suppose $x \in \Lambda_r\text{-int}(A)$. Then by Definition 2.21, there exists a Λ_r-open set U containing x such that $U \subseteq A$. Since $A \subseteq B$, $U \subseteq B$ and hence $x \in \Lambda_r\text{-int}(B)$. This proves (ii).

If $x \in \Lambda_r\text{-int}(A)$, then by Definition 2.21, there exists a Λ_r-open set U containing x such that $U \subseteq A$ and so $x \in \bigcup \{G : G \in \Lambda_rO(X, \tau) \text{ and } G \subseteq A\}$. The reverse inclusion can be obtained similarly. This proves (iii).

By Definition 2.21 itself, we have $\Lambda_r\text{-int}(A) \subseteq A$ and so by (ii), we have $\Lambda_r\text{-int}(\Lambda_r\text{-int}(A)) \subseteq \Lambda_r\text{-int}(A)$. On the other hand, let $x \in \Lambda_r\text{-int}(A)$. Then there exists a Λ_r-open set U containing x such that $U \subseteq A$. If $U \not\subseteq \Lambda_r\text{-int}(A)$, then there exists $y \in X$ such that $y \in U$ but $y \not\in \Lambda_r\text{-int}(A)$ which implies that for every Λ_r-open
set $G \subseteq A$, $y \notin G$. But U is a Λ_r-open set containing y such that $U \subseteq A$, a contradiction. Hence $U \subseteq \Lambda_r\text{-int}(A)$. Thus we have U is a Λ_r-open set containing x such that $U \subseteq \Lambda_r\text{-int}(A)$ which implies that $x \in \Lambda_r\text{-int}(\Lambda_r\text{-int}(A))$. This proves (iv).

Suppose $x \notin \Lambda_r\text{-cl}(X \setminus A)$. Then by Definition 2.10, x is not a Λ_r-cluster point of $X \setminus A$ and so there exists a Λ_r-open set U containing x such that $U \cap (X \setminus A) = \emptyset$, that is, $U \subseteq A$. Hence by Definition 2.21, $x \in \Lambda_r\text{-int}(A)$ and so $x \notin X \setminus \Lambda_r\text{-int}(A)$. The reverse inclusion can be similarly obtained. This proves (v).

Suppose A is Λ_r-open. Then by (iii), $A = \Lambda_r\text{-int}(A)$. For the converse, suppose $A = \Lambda_r\text{-int}(A)$. Then $X \setminus A = X \setminus \Lambda_r\text{-int}(A) = \Lambda_r\text{-cl}(X \setminus A)$ by (v). By Proposition 2.11(iv), $X \setminus A$ is Λ_r-closed and so A is Λ_r-open. This proves (vi).

By (iv) and (vi), $\Lambda_r\text{-int}(A)$ is Λ_r-open. If U is a Λ_r-open set such that $\Lambda_r\text{-int}(A) \subseteq U \subseteq A$, then by (iii), $\Lambda_r\text{-int}(A) = U$. This proves (vii).

Suppose $x \in \Lambda_r\text{-int}(X \setminus A)$. Then by Definition 2.21, there exists a Λ_r-open set U containing x such that $U \subseteq X \setminus A$ which implies that $U \cap A = \emptyset$. By Definition 2.10, $x \notin \Lambda_r\text{-cl}(A)$ and so $x \in X \setminus \Lambda_r\text{-cl}(A)$. The reverse inclusion can be obtained similarly. This proves (viii).

Definition 2.23.

Let A be a subset of a space X. A point $x \in X$ is said to be Λ_r-limit point of A if for every Λ_r-open set U containing x, $U \cap (A \setminus \{x\}) \neq \emptyset$. The set of all Λ_r-limit points of A is called a Λ_r-derived set of A and is denoted by $\Lambda_rD(A)$.

Theorem 2.24.

For subsets A, B of a space X, the following statements hold:

(i) $\Lambda_rD(A) \subseteq D(A)$ where $D(A)$ is the derived set of A.

(ii) If $A \subseteq B$, then $\Lambda_rD(A) \subseteq \Lambda_rD(B)$.

(iii) $\Lambda_rD(A) \cup \Lambda_rD(B) \subseteq \Lambda_rD(A \cup B)$ and $\Lambda_rD(A \cap B) \subseteq \Lambda_rD(A) \cap \Lambda_rD(B)$
(iv) \(\Lambda_r D(\Lambda_r D(A)) \setminus A \subseteq \Lambda_r D(A) \).

(v) \(\Lambda_r D(A \cup \Lambda_r D(A)) \subseteq A \cup \Lambda_r D(A) \).

Proof.

If \(x \notin D(A) \), then there exists a open set \(U \) containing \(x \) such that \(U \cap (A \setminus \{x\}) = \emptyset \). By Proposition 2.5(ii), \(U \) is a \(\Lambda_r \)-open set containing \(x \) such that \(U \cap (A \setminus \{x\}) = \emptyset \) and so by Definition 2.23, \(x \notin \Lambda_r D(A) \). This proves (i).

If \(x \in \Lambda_r D(A) \), then for every \(\Lambda_r \)-open set \(U \) containing \(x \), \(U \cap (A \setminus \{x\}) \neq \emptyset \). Since \(A \subseteq B \), \(U \cap (B \setminus \{x\}) \neq \emptyset \) and so \(x \in \Lambda_r D(B) \). This proves (ii).

By (ii), \(\Lambda_r D(A) \subseteq \Lambda_r D(A \cup B) \) and \(\Lambda_r D(B) \subseteq \Lambda_r D(A \cup B) \) which implies that \(\Lambda_r D(A) \cup \Lambda_r D(B) \subseteq \Lambda_r D(A \cup B) \). Again by (ii), \(\Lambda_r D(A \cap B) \subseteq \Lambda_r D(A) \) and \(\Lambda_r D(A \cap B) \subseteq \Lambda_r D(B) \) which implies \(\Lambda_r D(A \cap B) \subseteq \Lambda_r D(A) \cap \Lambda_r D(B) \). This proves (iii).

If \(x \in \Lambda_r D(\Lambda_r D(A)) \setminus A \), then by Definition 2.23, for every \(\Lambda_r \)-open set \(U \) containing \(x \), \(U \cap (\Lambda_r D(A) \setminus \{x\}) \neq \emptyset \) and \(x \notin A \). Let \(y \in U \cap (\Lambda_r D(A) \setminus \{x\}) \). Then \(y \in U \), \(y \in \Lambda_r D(A) \) and \(y \neq x \). Thus we have \(U \) is a \(\Lambda_r \)-open set containing \(y \) and \(U \cap (A \setminus \{y\}) \neq \emptyset \). Take \(z \in U \cap (A \setminus \{y\}) \). Then \(z \in U \), \(z \in A \) and \(z \neq y \). Since \(x \notin A \), we have \(z \neq x \) and \(U \cap (A \setminus \{x\}) \neq \emptyset \). This implies that \(x \notin \Lambda_r D(A) \). This proves (iv).

Suppose \(x \in \Lambda_r D(A \cup \Lambda_r D(A)) \). If \(x \in A \), then \(x \in A \cup \Lambda_r D(A) \). If \(x \notin A \), then \(x \in \Lambda_r D(A \cup \Lambda_r D(A)) \setminus A \), which implies that for every \(\Lambda_r \)-open set \(U \) containing \(x \), \(U \cap ((A \cup \Lambda_r D(A)) \setminus \{x\}) \neq \emptyset \). Then we obtain that \(U \cap (A \setminus \{x\}) \neq \emptyset \) or \(U \cap (\Lambda_r D(A) \setminus \{x\}) \neq \emptyset \) which implies that \(x \in \Lambda_r D(A) \) or \(x \in \Lambda_r D(\Lambda_r D(A)) \).

If \(x \in \Lambda_r D(A) \), then clearly it follows that \(x \in A \cup \Lambda_r D(A) \). If \(x \in \Lambda_r D(\Lambda_r D(A)) \), then \(x \in \Lambda_r D(\Lambda_r D(A)) \setminus A \) since \(x \notin A \). Hence by (iv), \(x \in \Lambda_r D(A) \) and so \(x \in A \cup \Lambda_r D(A) \). This proves (v). \(\square \)
The reverse inclusions in Theorem 2.24 need not be true which is shown in the following example.

Example 2.25.

Consider a topological space \((X, \tau)\) where \(X = \{a, b, c, d\}\) and \(\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}\). Then the \(\Lambda_r\)-open sets in \((X, \tau)\) are \(\emptyset, \{a\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\) and \(X\).

\(\text{(i)}\) If \(A = \{b, c, d\}\), then \(D(A) = \{b, c, d\}\) and \(\Lambda_rD(A) = \{b, c\}\). and so
\[D(A) \not\subseteq \Lambda_rD(A).\]

\(\text{(ii)}\) If \(A = \{a\}\) and \(B = \{b\}\), then \(\Lambda_rD(A) = \emptyset\), \(\Lambda_rD(B) = \{c\}\) and \(\Lambda_rD(A \cup B) = \{c, d\}\) and so \(\Lambda_rD(A \cup B) \not\subseteq \Lambda_rD(A) \cup \Lambda_rD(B)\).

\(\text{(iii)}\) If \(A = \{a, b, d\}\) and \(B = \{a, c, d\}\), then \(\Lambda_rD(A) = \{c, d\}\), \(\Lambda_rD(B) = \{b, d\}\) and \(\Lambda_rD(A \cap B) = \emptyset\) and so \(\Lambda_rD(A) \cap \Lambda_rD(B) \not\subseteq \Lambda_rD(A \cap B)\).

\(\text{(iv)}\) If \(A = \{a, b, c\}\), then \(\Lambda_rD(\Lambda_rD(A)) \setminus A = \emptyset\) and \(\Lambda_rD(A) = \{b, c, d\}\) and so
\[\Lambda_rD(A) \not\subseteq \Lambda_rD(\Lambda_rD(A)) \setminus A.\]

\(\text{(v)}\) If \(A = \{c, d\}\), then \(\Lambda_rD(A \cup \Lambda_rD(A)) = \{b, c\}\) and \(A \cup \Lambda_rD(A) = \{b, c, d\}\) and so \(A \cup \Lambda_rD(A) \not\subseteq \Lambda_rD(A \cup \Lambda_rD(A))\).

Theorem 2.26.

For any subset \(A\) of a space \(X\), the following are true:

\(\text{(i)}\) \(\Lambda_r-cl(A) = A \cup \Lambda_rD(A)\).

\(\text{(ii)}\) \(\Lambda_r-int(A) = A \setminus \Lambda_rD(X \setminus A)\).

Proof.

By Definition 2.10 and Definition 2.23 itself, we have \(\Lambda_rD(A) \subseteq \Lambda_r-cl(A)\). Then we obtain \(A \cup \Lambda_rD(A) \subseteq A \cup \Lambda_r-cl(A) = \Lambda_r-cl(A)\) by Proposition 2.11(i). On the other hand, let \(x \in \Lambda_r-cl(A)\). Then by Definition 2.10, for every \(\Lambda_r\)-open set
U containing x, \(U \cap A \neq \emptyset \). If \(x \in A \), then clearly \(x \in A \cup \Lambda_{r^{-}}D(A) \). If \(x \notin A \), then \(U \cap A \setminus \{x\} \neq \emptyset \) and so \(x \in \Lambda_{r^{-}}D(A) \) and so \(x \in A \cup \Lambda_{r^{-}}D(A) \). This proves (i).

If \(x \in A \setminus \Lambda_{r^{-}}D(X \setminus A) \), then \(x \notin \Lambda_{r^{-}}D(X \setminus A) \) and so by Definition 2.23, there exists a \(\Lambda_{r^-} \)-open set \(U \) containing \(x \) such that \(U \cap ((X \setminus A) \setminus \{x\}) = \emptyset \). Since \(x \in A \), \(U \cap (X \setminus A) = \emptyset \) which implies that \(U \subseteq A \) and so by Definition 2.21, \(x \in \Lambda_{r^-}\text{int}(A) \).

On the other hand, let \(x \in \Lambda_{r^-}\text{int}(A) \). Then by Definition 2.21, there exists a \(\Lambda_{r^-} \)-open set \(U \) containing \(x \) such that \(U \subseteq A \) and so \(U \cap (X \setminus A) = \emptyset \). Since \(x \in A \), we obtain that \(U \cap ((X \setminus A) \setminus \{x\}) = \emptyset \) which implies that \(x \notin \Lambda_{r^-}D(X \setminus A) \) and so \(x \in A \setminus \Lambda_{r^-}D(X \setminus A) \).

This proves (ii). \(\square \)

Definition 2.27.

Let \(A \) be a subset of a space \(X \). Then the \(\Lambda_{r^-} \)-border of \(A \) denoted by \(\Lambda_{r^-}b(A) \), is defined as \(\Lambda_{r^-}b(A) = A \setminus \Lambda_{r^-}\text{int}(A) \).

Theorem 2.28.

For a subset \(A \) of a space \(X \), the following statements hold:

(i) \(\Lambda_{r^-}b(A) \subseteq b(A) \) where \(b(A) = A \setminus \text{int}(A) \), is the border of \(A \).

(ii) \(A = \Lambda_{r^-}\text{int}(A) \cup \Lambda_{r^-}b(A) \).

(iii) \(\Lambda_{r^-}\text{int}(A) \cap \Lambda_{r^-}b(A) = \emptyset \).

(iv) \(A \) is \(\Lambda_{r^-} \)-open if and only if \(\Lambda_{r^-}b(A) = \emptyset \).

(v) \(\Lambda_{r^-}b(\Lambda_{r^-}\text{int}(A)) = \emptyset \).

(vi) \(\Lambda_{r^-}\text{int}(\Lambda_{r^-}b(A)) = \emptyset \).

(vii) \(\Lambda_{r^-}b(\Lambda_{r^-}b(A)) = \Lambda_{r^-}b(A) \).

(viii) \(\Lambda_{r^-}b(A) = A \cap \Lambda_{r^-}\text{cl}(X \setminus A) \).

(ix) \(\Lambda_{r^-}b(A) = A \cap \Lambda_{r^-}D(X \setminus A) \).
Proof.

Suppose \(x \not\in b(A) \). Then \(x \not\in A \) or \(x \in \text{int}(A) \). If \(x \not\in A \), then \(x \not\in A \setminus \Lambda_r\text{-int}(A) \) and so \(x \not\in \Lambda_r\text{-}b(A) \). If \(x \in \text{int}(A) \), then there exists a open set \(V \subseteq A \) such that \(x \in V \). By using Proposition 2.5(ii), \(V \) is a \(\Lambda_r \)-open set containing \(x \) such that \(V \subseteq A \) and so by Definition 2.21, \(x \in \Lambda_r\text{-int}(A) \) which implies that \(x \not\in A \setminus \Lambda_r\text{-int}(A) \). This proves \((i)\).

Suppose \(x \in \Lambda_r\text{-int}(A) \cup \Lambda_r\text{-}b(A) \). If \(x \in \Lambda_r\text{-int}(A) \), then by Definition 2.21, there exists a \(\Lambda_r \)-open set \(U \) containing \(x \) such that \(U \subseteq A \) and so \(x \in A \). If \(x \in \Lambda_r\text{-}b(A) \), then by Definition 2.27 itself, \(x \in A \). For the reverse inclusion, suppose \(x \not\in \Lambda_r\text{-int}(A) \cup \Lambda_r\text{-}b(A) \). Then \(x \not\in \Lambda_r\text{-}b(A) \) and \(x \not\in \Lambda_r\text{-int}(A) \) which implies that \(x \not\in A \). This proves \((ii)\).

If \(x \in \Lambda_r\text{-int}(A) \cap \Lambda_r\text{-}b(A) \), then \(x \in \Lambda_r\text{-int}(A) \) and \(x \in \Lambda_r\text{-}b(A) \). Since \(\Lambda_r\text{-int}(A) \subseteq A \), \(x \in A \). Since \(x \in \Lambda_r\text{-}b(A) \), by Definition 2.27, \(x \not\in \Lambda_r\text{-int}(A) \). Thus we obtain that \(x \in \Lambda_r\text{-int}(A) \) and \(x \not\in \Lambda_r\text{-int}(A) \), a contradiction. This proves \((iii)\).

Suppose \(A \) is \(\Lambda_r \)-open. Then by Theorem 2.22(vi), \(A = \Lambda_r\text{-int}(A) \). If \(x \in \Lambda_r\text{-}b(A) \), then by Definition 2.27, \(x \in A \) and \(x \not\in \Lambda_r\text{-int}(A) \) = \(A \). This contradiction shows that \(\Lambda_r\text{-}b(A) = \varnothing \). For the converse, suppose that \(\Lambda_r\text{-}b(A) = \varnothing \). Then \(A = \Lambda_r\text{-int}(A) \) and so by Theorem 2.22(vi), \(A \) is \(\Lambda_r \)-open. This proves \((iv)\).

Suppose \(\Lambda_r\text{-}b(\Lambda_r\text{-int}(A)) \neq \varnothing \) and let \(x \in \Lambda_r\text{-}b(\Lambda_r\text{-int}(A)) \). Then we obtain that \(x \in \Lambda_r\text{-int}(A) \) and \(x \not\in \Lambda_r\text{-int}(\Lambda_r\text{-int}(A)) \) which implies that \(x \not\in \Lambda_r\text{-int}(A) \) and \(x \not\in \Lambda_r\text{-int}(A) \) by Theorem 2.22(iv), a contradiction. This proves \((v)\).

If \(x \in \Lambda_r\text{-int}(\Lambda_r\text{-}b(A)) \), then by Definition 2.21, we have \(x \in \Lambda_r\text{-}b(A) \). By Definition 2.27 itself, \(\Lambda_r\text{-}b(A) \subseteq A \) and so by Theorem 2.22(ii), \(\Lambda_r\text{-int}(\Lambda_r\text{-}b(A)) \subseteq \Lambda_r\text{-int}(A) \) and so \(x \in \Lambda_r\text{-int}(A) \). Thus we obtain that \(\Lambda_r\text{-}b(A) \cap \Lambda_r\text{-int}(A) \neq \varnothing \), which contradicts \((iii)\). Hence \(\Lambda_r\text{-int}(\Lambda_r\text{-}b(A)) \) must be empty. This proves \((vi)\).
If \(x \in \Lambda_r-b(\Lambda_r-b(A)) \), then by Definition 2.27, \(x \in \Lambda_r-b(A)\setminus\Lambda_r-int(\Lambda_r-b(A)) \) and so by \((vi)\), \(x \in \Lambda_r-b(A) \). For the converse, let \(x \not\in \Lambda_r-b(\Lambda_r-b(A)) \). Then by Definition 2.27, \(x \not\in \Lambda_r-b(A)\setminus\Lambda_r-int(\Lambda_r-b(A)) \). By using \((vi)\), \(x \not\in \Lambda_r-b(A) \). This proves \((vii)\).

By Definition 2.27, \(\Lambda_r-b(A) = A \setminus \Lambda_r-int(A) = A \cap (X \setminus \Lambda_r-int(A)) \) and so by Theorem 2.22\((v)\), \(\Lambda_r-b(A) = A \cap \Lambda_r-cl(X\setminus A) \). This proves \((vii)\).

By \((viii)\), \(\Lambda_r-b(A) = A \cap \Lambda_r-cl(X\setminus A) \). Then by Theorem 2.26\((i)\), we have \(\Lambda_r-cl(X\setminus A) = (X\setminus A) \cup \Lambda_r-D(X\setminus A) \) and so \(\Lambda_r-b(A) = A \cap ((X\setminus A) \cup \Lambda_r-D(X\setminus A)) \) which implies \(\Lambda_r-b(A) = A \cap \Lambda_r-D(X\setminus A) \). This proves \((ix)\). \(\square\)

The next example shows that the reverse inclusion of Theorem 2.28\((i)\) need not be true.

Example 2.29.

Let \(X = \{a,b,c,d\} \) having the topology \(\tau = \{\emptyset, \{a\}, \{b\}, \{a,b\}, X\} \). Then the \(\Lambda_r \)-open sets in \((X, \tau) \) are \(\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c,d\}, \{b,c,d\} \) and \(X \). Take \(A = \{a,c,d\} \).

Then \(b(A) = \{c,d\} \) and \(\Lambda_r-b(A) = \emptyset \). Hence \(b(A) \not\subseteq \Lambda_r-b(A) \).

Definition 2.30.

Let \(A \) be a subset of a space \(X \). Then the \(\Lambda_r \)-frontier of \(A \) denoted by \(\Lambda_r-Fr(A) \), is defined as \(\Lambda_r-Fr(A) = \Lambda_r-cl(A) \setminus \Lambda_r-int(A) \).

Theorem 2.31.

For a subset \(A \) of a space \(X \), the following statements hold:

\[(i) \quad \Lambda_r-Fr(A) \subseteq Fr(A) \text{ where } Fr(A) = cl(A) \setminus int(A), \text{ is the frontier of } A.\]

\[(ii) \quad \Lambda_r-cl(A) = \Lambda_r-int(A) \cup \Lambda_r-Fr(A).\]

\[(iii) \quad \Lambda_r-int(A) \cap \Lambda_r-Fr(A) = \emptyset.\]

\[(iv) \quad \Lambda_r-b(A) \subseteq \Lambda_r-Fr(A).\]

\[(v) \quad \Lambda_r-Fr(A) = \Lambda_r-cl(A) \cap \Lambda_r-cl(X\setminus A).\]
(vi) $\Lambda_r Fr(A) = \Lambda_r Fr(X \setminus A)$.

(vii) $\Lambda_r b(A) = \Lambda_r Fr(A)$ if A is Λ_r-closed.

(viii) $\Lambda_r Fr(A)$ is Λ_r-closed.

(ix) $\Lambda_r int(A) = A \setminus \Lambda_r Fr(A)$.

Proof.

If $x \in \Lambda_r Fr(A)$, then by Definition 2.30, $x \in \Lambda_r cl(A)$ and $x \notin \Lambda_r int(A)$. By Proposition 2.11(vi), $\Lambda_r cl(A) \subseteq cl(A)$ and by Theorem 2.22(i), $int(A) \subseteq \Lambda_r int(A)$ and so $x \in cl(A) \setminus int(A) = Fr(A)$. **This proves (i).**

Suppose that $x \in \Lambda_r int(A) \cup \Lambda_r Fr(A)$. Then $x \in \Lambda_r int(A)$ or $x \in \Lambda_r Fr(A)$. If $x \in \Lambda_r int(A)$, by Definition 2.21 itself, $\Lambda_r int(A) \subseteq A$ and by Proposition 2.11(i), $A \subseteq \Lambda_r cl(A)$ and so $\Lambda_r int(A) \subseteq \Lambda_r cl(A)$ and so $x \in \Lambda_r cl(A)$. If $x \in \Lambda_r Fr(A)$, from Definition 2.30, $x \in \Lambda_r cl(A)$. On the other hand, let $x \notin \Lambda_r int(A) \cup \Lambda_r Fr(A)$. Then $x \notin \Lambda_r int(A)$ and $x \notin \Lambda_r Fr(A)$ and so $x \notin \Lambda_r cl(A)$. **This proves (ii).**

By Definition 2.30, we have $\Lambda_r int(A) \cap \Lambda_r Fr(A) = \Lambda_r int(A) \cap (\Lambda_r cl(A) \setminus \Lambda_r int(A)) = \Lambda_r int(A) \cap \Lambda_r cl(A) \cap (X \setminus \Lambda_r int(A)) = \emptyset$. **This proves (iii).**

By using Proposition 2.11(i), $A \setminus \Lambda_r int(A) \subseteq \Lambda_r cl(A) \setminus \Lambda_r int(A)$ and so $\Lambda_r b(A) \subseteq \Lambda_r Fr(A)$. **This proves (iv).**

By Definition 2.30, we have $\Lambda_r Fr(A) = \Lambda_r cl(A) \setminus \Lambda_r int(A) = \Lambda_r cl(A) \cap (X \setminus \Lambda_r int(A)) = \Lambda_r cl(A) \cap \Lambda_r cl(X \setminus A)$ by Theorem 2.22(v). **This proves (v).**

By (v), $\Lambda_r Fr(A) = \Lambda_r cl(A) \cap \Lambda_r cl(X \setminus A) = \Lambda_r cl(X \setminus A) \cap \Lambda_r cl(A) = \Lambda_r Fr(X \setminus A)$. **This proves (vi).**

Suppose A is Λ_r-closed. By Proposition 2.11(iv), $A = \Lambda_r cl(A)$ and hence $A \setminus \Lambda_r int(A) = \Lambda_r cl(A) \setminus \Lambda_r int(A)$ which implies that $\Lambda_r b(A) = \Lambda_r Fr(A)$. **This proves (vii).**
\[\Lambda r-cl(\Lambda r-cl(A) \cap \Lambda r-cl(X \setminus A)) \subseteq \Lambda r-cl(\Lambda r-cl(A)) \cap \Lambda r-cl(\Lambda r-cl(X \setminus A)) \] by using Proposition 2.11(iii). Using Proposition 2.11(iv) and Proposition 2.11(v),
\[\Lambda r-cl(\Lambda r-cl(A)) = \Lambda r-cl(A) \text{ and } \Lambda r-cl(\Lambda r-cl(X \setminus A)) = \Lambda r-cl(X \setminus A) \] and so by (v),
\[\Lambda r-cl(\Lambda r-Fr(A)) \subseteq \Lambda r-Fr(A). \] By Proposition 2.11(i), \(\Lambda r-Fr(A) \subseteq \Lambda r-cl(\Lambda r-Fr(A)) \) and so by Proposition 2.11(i), \(\Lambda r-Fr(A) \) is \(\Lambda r \)-closed. This proves (viii).

\[A \setminus \Lambda r-Fr(A) = A \setminus (\Lambda r-cl(A) \setminus \Lambda r-int(A)) = (A \setminus \Lambda r-cl(A)) \cup (A \cap \Lambda r-int(A)) \] by Definition 2.30. By using Proposition 2.11(i) and Definition 2.21, \(A \setminus \Lambda r-cl(A) = \emptyset \) and \(A \cap \Lambda r-int(A) = \Lambda r-int(A) \) which implies that \(A \setminus \Lambda r-Fr(A) = \Lambda r-int(A) \).

This proves (ix). \(\square \)

The reverse inclusions in Theorem 2.31 need not be true as seen in the next example.

Example 2.32.

Consider a topological space \((X, \tau)\) where \(X = \{a, b, c, d\}\) and \(\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}\). Then we have

(i) If \(A = \{b, c\}\), then \(Fr(A) = \{d\}\) and \(\Lambda r-Fr(A) = \emptyset\) and so \(Fr(A) \not\subseteq \Lambda r-Fr(A)\).

(ii) If \(A = \{a, c, d\}\), then \(\Lambda r-Fr(A) = \{b, c\}\) and \(\Lambda r-b(A) = \{c\}\) and so

\[\Lambda r-Fr(A) \not\subseteq \Lambda r-b(A) \].

Conclusion

The concepts of \(\Lambda r\)-closed sets and \(\Lambda r\)-open sets are used to characterize the \(\lambda\)-closed, \(\lambda\)-semi-closed, \((\Lambda, \alpha)\)-closed and \((\Lambda, \delta)\)-closed sets. Also the basic operators namely closure and interior operators are studied using the above sets.