CHAPTER VII

Λ_r-homeomorphisms

In this chapter, the concepts of Λ_r-homeomorphisms and Λ_r*-homeomorphisms are introduced and characterized their properties.

Λ_r-homeomorphisms

Definition 7.1.

A bijection \(f : X \to Y \) is called \(\Lambda_r \)-homeomorphism if both \(f \) and \(f^{-1} \) are \(\Lambda_r \)-continuous.

We denote the family of all \(\Lambda_r \)-homeomorphisms of a topological space \((X, \tau)\) onto itself by \(\Lambda_r \mathcal{H}(X, \tau) \).

Theorem 7.2.

Every homeomorphism is a \(\Lambda_r \)-homeomorphism but the converse is not true.

Proof.

If \(f : X \to Y \) is a homeomorphism, then \(f \) is bijective and both \(f \) and \(f^{-1} \) are continuous. By Theorem 5.2, \(f \) and \(f^{-1} \) are \(\Lambda_r \)-continuous and so by Definition 7.1, \(f \) is a \(\Lambda_r \)-homeomorphism.

The converse is not true as seen in the following example. If \(X = Y = \{a,b,c\} \), \(\tau = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{b,c\}, X\} \) and \(\sigma = \{\emptyset, \{b\}, \{c\}, \{b,c\}, Y\} \), then \(\Lambda_r \mathcal{O}(X, \tau) = \tau \) and \(\Lambda_r \mathcal{O}(Y, \sigma) = \{\emptyset, \{b\}, \{c\}, \{b,c\}, \{a,c\}, \{a,b\}, Y\} \). Consider \(f : (X, \tau) \to (Y, \sigma) \) defined by \(f(a) = c, f(b) = b \) and \(f(c) = a \). Then \(f \) is a \(\Lambda_r \)-homeomorphism. Since \(\{b,c\} \) is open in \((X, \tau)\) but \(f(\{b,c\}) = \{a,b\} \) is not open in \((Y, \sigma)\), \(f^{-1} \) is not continuous and so \(f \) is not a homeomorphism.

\(\square \)

In general, the composition of two homeomorphisms is a homeomorphism. But the following example shows that the composition of two \(\Lambda_r \)-homeomorphisms need not be a \(\Lambda_r \)-homeomorphism.
Example 7.3.

If $X = Y = Z = \{a,b,c\}$, $\tau = \{\emptyset, \{a\}, \{a,b\}, \{b,c\}, X\}$, $\sigma = \{\emptyset, \{b\}, \{c\}, \{b,c\}, Y\}$ and $\gamma = \{\emptyset, \{a\}, \{a,b\}, \{b,c\}, Z\}$, then $\Lambda_rO(X, \tau) = \tau$, $\Lambda_rO(Y, \sigma) = \{\emptyset, \{b\}, \{c\}, \{b,c\}, Y\}$ and $\Lambda_rO(Z, \gamma) = \gamma$. Define $f : (X, \tau) \to (Y, \sigma)$ by $f(a) = c$, $f(b) = b$ and $f(c) = a$ and define $g : (Y, \sigma) \to (Z, \gamma)$ by $g(a) = c$, $g(b) = a$ and $g(c) = b$. Then f and g are Λ_r-homeomorphisms. Since $\{b,c\}$ is open in (Z, γ) but $(g \circ f)^{-1}(\{b,c\}) = \{a,c\}$ is not Λ_r-open in (X, τ), $g \circ f$ is not Λ_r-continuous and so $g \circ f$ is not Λ_r-homeomorphism.

Theorem 7.4.

Let $f : X \to Y$ be a bijective Λ_r-continuous function. Then the following are equivalent:

(i) f is Λ_r-open.

(ii) f is Λ_r-homeomorphism.

(iii) f is Λ_r-closed.

Proof.

Suppose (i) holds. If V is open in X, then by Definition 5.33, $f(V)$ is Λ_r-open in Y. But $f(V) = (f^{-1})^{-1}(V)$ and so $(f^{-1})^{-1}(V)$ is Λ_r-open in Y and so by Definition 5.1, f^{-1} is Λ_r-continuous. This proves (ii).

Suppose (ii) holds. Let F be closed in X. Then by Definition 7.1, f^{-1} is Λ_r-continuous and so by Theorem 5.5, $(f^{-1})^{-1}(F) = f(F)$ is Λ_r-closed in Y. By Definition 5.45, f is Λ_r-closed. This proves (iii).

Suppose (iii) holds. If V is open in X, then $X \setminus V$ is closed in X. By Definition 5.45, $f(X \setminus V)$ is Λ_r-closed in Y. But $f(X \setminus V) = Y \setminus f(V)$ which implies that $Y \setminus f(V)$ is Λ_r-closed in Y and so $f(V)$ is Λ_r-open in Y. By Definition 5.33, f is Λ_r-open. This proves (i).
\[\Lambda^*_r\text{-homeomorphisms}\]

Definition 7.5.

A bijection \(f : X \to Y \) is said to be \(\Lambda^*_r \)-homeomorphism if both \(f \) and \(f^{-1} \) are \(\Lambda^*_r \)-irresolute.

The spaces \(X \) and \(Y \) are said to be \(\Lambda^*_r \)-homeomorphic if there exists a \(\Lambda^*_r \)-homeomorphism from \(X \) onto \(Y \).

The family of all \(\Lambda^*_r \)-homeomorphisms of a topological space \((X, \tau)\) onto itself is denoted by \(\Lambda^*_r H(X, \tau) \).

Theorem 7.6.

Every \(\Lambda^*_r \)-homeomorphism is a \(\Lambda_r \)-homeomorphism but the converse is not true.

Proof.

If \(f : X \to Y \) is a \(\Lambda^*_r \)-homeomorphism, then by Definition 7.5, \(f \) is bijective, \(\Lambda^*_r \)-irresolute and \(f^{-1} \) is \(\Lambda^*_r \)-irresolute. By Remark 5.17, \(f \) and \(f^{-1} \) are \(\Lambda_r \)-continuous and so by Definition 7.1, \(f \) is a \(\Lambda_r \)-homeomorphism.

The converse is not true as seen in the following example. Consider the topological spaces \((X, \tau)\) and \((Y, \sigma)\) where \(X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\} \) and \(\sigma = \{\emptyset, \{b\}, \{c\}, \{b, c\}, Y\}. \) Then \(\Lambda^*_r O(X, \tau) = \tau \) and \(\Lambda^*_r O(Y, \sigma) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{a, c\}, \{a, b\}, Y\}. \) Consider \(f : (X, \tau) \to (Y, \sigma) \) defined by \(f(a) = c, f(b) = b \) and \(f(c) = a. \) Then \(f \) is a \(\Lambda_r \)-homeomorphism. Since \(\{a, c\} \) is \(\Lambda_r \)-open in \((Y, \sigma)\) but \(f^{-1}(\{a, c\}) = \{a, c\} \) is not \(\Lambda_r \)-open in \((X, \tau)\), \(f \) is not \(\Lambda_r \)-irresolute and so \(f \) is not a \(\Lambda^*_r \)-homeomorphism. \(\square \)

Theorem 7.7.

Let \(f : X \to Y \) be a \(\Lambda^*_r \)-homeomorphism. Then the following are true:

(i) \(\Lambda^*_r cl(f^{-1}(B)) = f^{-1}(\Lambda^*_r cl(B)) \) for every \(B \subseteq Y. \)

(ii) \(\Lambda^*_r cl(f(B)) = f(\Lambda^*_r cl(B)) \) for every \(B \subseteq X. \)
(iii) \(f(\Lambda_r\text{int}(B)) = \Lambda_r\text{int}(f(B)) \) for every \(B \subseteq X \).

(iv) \(f^{-1}(\Lambda_r\text{int}(B)) = \Lambda_r\text{int}(f^{-1}(B)) \) for every \(B \subseteq Y \).

Proof.

Suppose \(f : X \rightarrow Y \) is a \(\Lambda_r^* \)-homeomorphism. Then by Definition 7.5, \(f \) is bijective and both \(f \) and \(f^{-1} \) are \(\Lambda_r \)-irresolute. If \(B \subseteq Y \), then by Proposition 2.11(v), \(\Lambda_r\text{cl}(B) \) is a \(\Lambda_r \)-closed set in \(Y \) and so by Theorem 5.16, \(f^{-1}(\Lambda_r\text{cl}(B)) \) is \(\Lambda_r \)-closed in \(X \). Using Proposition 2.11(i), it follows that \(f^{-1}(B) \subseteq f^{-1}(\Lambda_r\text{cl}(B)) \). By Remark 2.13(ii), \(\Lambda_r\text{cl}(f^{-1}(B)) \) is the smallest \(\Lambda_r \)-closed set containing \(f^{-1}(B) \) and so \(\Lambda_r\text{cl}(f^{-1}(B)) \subseteq f^{-1}(\Lambda_r\text{cl}(B)) \). Again, by Proposition 2.11(v), \(\Lambda_r\text{cl}(f^{-1}(B)) \) is \(\Lambda_r \)-closed in \(Y \) and then by Theorem 5.16, \(f(\Lambda_r\text{cl}(f^{-1}(B))) \) is \(\Lambda_r \)-closed in \(Y \). Moreover, \(B = f(f^{-1}(B)) \subseteq f(\Lambda_r\text{cl}(f^{-1}(B))) \). By Remark 2.13(ii), \(B \subseteq \Lambda_r\text{cl}(B) \subseteq f(\Lambda_r\text{cl}(f^{-1}(B))) \) and so \(f^{-1}(\Lambda_r\text{cl}(B)) \subseteq f^{-1}(f(\Lambda_r\text{cl}(f^{-1}(B)))) = \Lambda_r\text{cl}(f^{-1}(B)) \) which implies that \(f^{-1}(\Lambda_r\text{cl}(B)) \subseteq \Lambda_r\text{cl}(f^{-1}(B)) \). From this, it follows that \(\Lambda_r\text{cl}(f^{-1}(B)) = f^{-1}(\Lambda_r\text{cl}(B)) \). This proves (i).

Let \(f : X \rightarrow Y \) be a \(\Lambda_r^* \)-homeomorphism. Then by Definition 7.5 itself, \(f^{-1} \) is also a \(\Lambda_r^* \)-homeomorphism. By (i), it follows that \(\Lambda_r\text{cl}(f(B)) = f(\Lambda_r\text{cl}(B)) \) for every \(B \subseteq X \). This proves (ii).

Suppose \(f : X \rightarrow Y \) is a \(\Lambda_r^* \)-homeomorphism. Then by Theorem 2.22(v), for any subset \(B \) of \(X \), \(\Lambda_r\text{int}(B) = X \setminus \Lambda_r\text{cl}(X \setminus B) \) which implies that \(f(\Lambda_r\text{int}(B)) = f(X \setminus \Lambda_r\text{cl}(X \setminus B)) = Y \setminus f(\Lambda_r\text{cl}(X \setminus B)) \). Then by (ii), we see that \(f(\Lambda_r\text{int}(B)) = Y \setminus \Lambda_r\text{cl}(f(X \setminus B)) = \Lambda_r\text{int}(f(B)) \). This proves (iii).

Let \(f : X \rightarrow Y \) be a \(\Lambda_r^* \)-homeomorphism. Then by Definition 7.5, \(f^{-1} \) is also a \(\Lambda_r^* \)-homeomorphism. By (iii), \(f^{-1}(\Lambda_r\text{int}(B)) = \Lambda_r\text{int}(f^{-1}(B)) \) for every \(B \subseteq Y \). This proves (iv). \(\square \)
Theorem 7.8.

If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are Λ^*_r-homeomorphisms, then the composition $g \circ f : X \rightarrow Z$ is also Λ^*_r-homeomorphism.

Proof.

Since f and g are Λ^*_r-homeomorphisms, by Definition 7.5, f and g are Λ_r-irresolute functions and so by Theorem 5.19, $g \circ f$ is Λ_r-irresolute. Again by Definition 7.5, f^{-1} and g^{-1} are Λ_r-irresolute and by Theorem 5.19, $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ is Λ_r-irresolute. By Definition 7.5, f and g are bijective and so $g \circ f$ is bijective. This completes the proof. □

Theorem 7.9.

The set $\Lambda^*_r H(X, \tau)$ is a group under composition of functions.

Proof.

Let $f, g \in \Lambda^*_r H(X, \tau)$. Then by Theorem 7.8, $f \circ g \in \Lambda^*_r H(X, \tau)$. Since f is bijective, $f^{-1} \in \Lambda^*_r H(X, \tau)$. This completes the proof. □

We hereby call $\Lambda^*_r H(X, \tau)$ as a group of Λ^*_r-homeomorphisms from (X, τ) to itself. The next theorem states that the group of Λ^*_r-homeomorphisms have an isomorphism.

Theorem 7.10.

If $f : X \rightarrow X$ is a Λ^*_r-homeomorphism, then f induces an isomorphism from the group $\Lambda^*_r H(X, \tau)$ onto the group $\Lambda^*_r H(X, \tau)$.

Proof.

Let $f \in \Lambda^*_r H(X, \tau)$. Then define a function $\psi_f : \Lambda^*_r H(X, \tau) \rightarrow \Lambda^*_r H(X, \tau)$ by $\psi_f (h) = f \circ h \circ f^{-1}$ for every $h \in \Lambda^*_r H(X, \tau)$. Let $h_1, h_2 \in \Lambda^*_r H(X, \tau)$. Then we have

\[\psi_f (h_1 \circ h_2) = f \circ (h_1 \circ h_2) \circ f^{-1} = f \circ (h_1 \circ f^{-1} \circ f \circ h_2) \circ f^{-1} = (f \circ h_1 \circ f^{-1}) \circ (f \circ h_2 \circ f^{-1}) = \psi_f (h_1) \circ \psi_f (h_2).\]

Since $\psi_f (f^{-1} \circ h \circ f) = h$, ψ_f is onto. Now $\psi_f (h) = I$ implies...
That implies \(h = I \). Hence \(\psi_f \) is one-one. This shows that \(\psi_f \) is a isomorphism. \(\square \)

Some preservation theorems

Theorem 7.11.

Let \(f : X \to Y \) be bijective. Then the following hold:

- (i) If \(f \) is \(\Lambda_r^* \)-open and \(X \) is \(\Lambda_r \)-T₂, then \(Y \) is \(\Lambda_r \)-T₂.
- (ii) If \(f \) is continuous and \(\Lambda_r^* \)-open and \(X \) is \(\Lambda_r \)-regular, then \(Y \) is \(\Lambda_r \)-regular.
- (iii) If \(f \) is continuous and \(\Lambda_r^* \)-open and \(X \) is \(\Lambda_r \)-normal, then \(Y \) is \(\Lambda_r \)-normal.
- (iv) If \(f \) is \(\Lambda_r^* \)-open and \(Y \) is \(\Lambda_r \)-connected, then \(X \) is \(\Lambda_r \)-connected.
- (v) If \(f \) is \(\Lambda_r \)-open and \(Y \) is \(\Lambda_r \)-connected, then \(X \) is connected.
- (vi) If \(f \) is \(\Lambda_r^* \)-open, \(\Lambda_r \)-irresolute and \(Y \) is \(\Lambda_r \)-compact, then \(X \) is \(\Lambda_r \)-compact.

Proof.

If \(y_1, y_2 \in Y \) such that \(y_1 \neq y_2 \), then there exists \(x_1, x_2 \in X \) such that \(y_1 = f(x_1) \) and \(y_2 = f(x_2) \) and so \(x_1 \neq x_2 \). Since \(X \) is \(\Lambda_r \)-T₂, by Definition 3.11, there exists \(\Lambda_r \)-open sets \(U \) and \(V \) in \(X \) such that \(x_1 \in U, x_2 \in V \) and \(U \cap V = \emptyset \). Since \(f \) is \(\Lambda_r^* \)-open, by Definition 5.54, \(f(U) \) and \(f(V) \) are \(\Lambda_r \)-open in \(Y \). Also we have \(y_1 = f(x_1) \in f(U), y_2 = f(x_2) \in f(V) \) and \(f(U) \cap f(V) = f(U \cap V) = \emptyset \). This shows that \(Y \) is \(\Lambda_r \)-T₂. This proves (i).

Let \(y \in Y \) and \(F \) be any closed subset of \(Y \) with \(y \notin F \). Since \(f \) is continuous, \(f^{-1}(F) \) is closed in \(X \). Since \(f \) is onto, let \(y = f(x) \), where \(x \in X \). Then \(x \notin f^{-1}(F) \). Since \(X \) is \(\Lambda_r \)-regular, by Definition 3.46, there exists \(\Lambda_r \)-open sets \(U \) and \(V \) in \(X \) such that \(x \in U, f^{-1}(F) \subseteq V \) and \(U \cap V = \emptyset \). Since \(f \) is \(\Lambda_r^* \)-open, by Definition 5.54, \(f(U) \) and \(f(V) \) are \(\Lambda_r \)-open in \(Y \). Also we have \(y \in f(U), F \subseteq f(V) \) and \(f(U) \cap f(V) = f(U \cap V) = \emptyset \). This shows that \(Y \) is \(\Lambda_r \)-regular. This proves (ii).
Let A and B be any two closed sets in Y such that $A \cap B = \emptyset$. Since f is continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are closed in X and $f^{-1}(A) \cap f^{-1}(B) = \emptyset$. Since X is Λ_r-normal, by Definition 3.51, there exists Λ_r-open sets U and V in X such that $f^{-1}(A) \subseteq U$, $f^{-1}(B) \subseteq V$ and $U \cap V = \emptyset$. Since f is Λ_r*-open, by Definition 5.54, $f(U)$ and $f(V)$ are Λ_r-open in Y. Since f is bijective, $A \subseteq f(U)$, $B \subseteq f(V)$ and $f(U) \cap f(V) = \emptyset$. This shows that Y is Λ_r-normal. This proves (iii).

Suppose that X is Λ_r-disconnected. Then by Definition 4.1, there exists a pair A, B of nonempty disjoint Λ_r-open sets in X such that $X = A \cup B$. Since f is Λ_r*-open, by Definition 5.54, $f(A)$ and $f(B)$ are Λ_r-open in Y. Also $f(A)$ and $f(B)$ are nonempty subsets of Y. Since f is injective and onto, $f(A) \cap f(B) = \emptyset$ and $f(X) = Y$. Thus we have $Y = f(X) = f(A \cup B) = f(A) \cup f(B)$ where $f(A)$ and $f(B)$ are nonempty disjoint Λ_r-open sets in Y and so Y is Λ_r-disconnected. This contradiction shows that X is Λ_r-connected. This proves (iv).

Suppose that X is not connected. Then $X = A \cup B$ where A and B are disjoint nonempty open sets in X. Since f is Λ_r-open, $f(A)$ and $f(B)$ are Λ_r-open in Y. Since f is bijective, $f(A) \cap f(B) = \emptyset$ and $f(X) = Y$. Therefore $Y = f(A) \cup f(B)$ where $f(A)$ and $f(B)$ are disjoint nonempty Λ_r-open sets in Y and so Y is Λ_r-disconnected. This contradiction shows that X is connected. This proves (v).

Let \{ $A_i : i \in I$ \} be a Λ_r-open cover of X. Since f is Λ_r*-open, by Definition 5.54, \{ $f(A_i) : i \in I$ \} is a Λ_r-open cover of Y. Since Y is Λ_r-compact, by Definition 4.24, Y has a finite subcover, say \{ $f(A_1)$, $f(A_2)$,..., $f(A_n)$ \}. Since f is Λ_r-irresolute, by Definition 5.15, \{ $f^{-1}(f(A_1))$, $f^{-1}(f(A_2))$,..., $f^{-1}(f(A_n))$ \} is a finite subcover of X which implies that \{ A_1,..., A_n \} is a finite subcover of X and so X is Λ_r-compact. This proves (vi). \[\Box\]
Theorem 7.12.

Let \(f : X \to Y \) be injective. Then the following hold:

(i) If \(f \) is \(\Lambda_r \)-irresolute and \(Y \) is \(\Lambda_r \)-\(T_2 \), then \(X \) is \(\Lambda_r \)-\(T_2 \).

(ii) If \(f \) is \(\Lambda_r \)-irresolute and closed and \(Y \) is \(\Lambda_r \)-regular, then \(X \) is \(\Lambda_r \)-regular.

(iii) If \(f \) is \(\Lambda_r \)-irresolute and closed and \(Y \) is \(\Lambda_r \)-normal, then \(X \) is \(\Lambda_r \)-normal.

Proof.

Since \(f \) is injective, \(f(x) \neq f(y) \) for \(x, y \in X \) and \(x \neq y \). Since \(Y \) is \(\Lambda_r \)-\(T_2 \), by Definition 3.11, there exists disjoint \(\Lambda_r \)-open sets \(G \) and \(H \) in \(Y \) such that \(f(x) \in G, f(y) \in H \). Let \(U = f^{-1}(G) \) and \(V = f^{-1}(H) \). By Definition 5.15, \(U \) and \(V \) are \(\Lambda_r \)-open in \(X \). Then we obtain \(x \in f^{-1}(G) = U, y \in f^{-1}(H) = V \) and \(U \cap V = f^{-1}(G \cap H) = \emptyset \) and so by Definition 3.11, \(X \) is \(\Lambda_r \)-\(T_2 \). This proves (i).

Let \(F \) be any closed set in \(X \) and \(x \notin F \). Since \(f \) is a closed map, \(f(F) \) is closed in \(Y \) and \(f(x) \notin f(F) \). Since \(Y \) is \(\Lambda_r \)-regular, by Definition 3.46, there exists \(\Lambda_r \)-open sets \(U \) and \(V \) in \(Y \) such that \(f(x) \in U, f(F) \subseteq V \) and \(U \cap V = \emptyset \). Since \(f \) is \(\Lambda_r \)-irresolute, by Definition 5.15, \(f^{-1}(U) \) and \(f^{-1}(V) \) are \(\Lambda_r \)-open in \(X \). Also we have \(x \in f^{-1}(U), F \subseteq f^{-1}(V) \) and \(f^{-1}(U) \cap f^{-1}(V) = \emptyset \). This shows that \(X \) is \(\Lambda_r \)-regular. This proves (ii).

Let \(A \) and \(B \) be any two disjoint closed subsets of \(X \). Since \(f \) is closed, \(f(A) \) and \(f(B) \) are closed in \(Y \). Since \(f \) is injective, \(f(A) \cap f(B) = f(A \cap B) = \emptyset \). Since \(Y \) is \(\Lambda_r \)-normal, by Definition 3.51, there exists \(\Lambda_r \)-open sets \(U \) and \(V \) in \(Y \) such that \(f(A) \subseteq U, f(B) \subseteq V \) and \(U \cap V = \emptyset \) which implies that \(A \subseteq f^{-1}(U), B \subseteq f^{-1}(V) \) and \(f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = \emptyset \). Since \(f \) is \(\Lambda_r \)-irresolute, by Definition 5.15, \(f^{-1}(U) \) and \(f^{-1}(V) \) are \(\Lambda_r \)-open in \(X \). This proves \(X \) is \(\Lambda_r \)-normal. This proves (iii). \(\square \)
Theorem 7.13.

Let \(f : X \to Y \) be surjective. Then the following hold:

(i) If \(f \) is \(\Lambda_r \)-continuous and \(X \) is \(\Lambda_r \)-connected, then \(Y \) is connected.

(ii) If \(f \) is \(\Lambda_r \)-irresolute and \(X \) is \(\Lambda_r \)-connected, then \(Y \) is \(\Lambda_r \)-connected.

(iii) If \(f \) is \(\Lambda_r \)-irresolute and \(X \) is \(\Lambda_r \)-compact, then \(Y \) is \(\Lambda_r \)-compact.

Proof.

Suppose that \(Y \) is not connected. Then there exists nonempty disjoint open sets \(A \) and \(B \) in \(Y \) such that \(Y = A \cup B \). Since \(f \) is \(\Lambda_r \)-continuous, by Definition 5.1, \(f^{-1}(A) \) and \(f^{-1}(B) \) are \(\Lambda_r \)-open in \(X \). Since \(f \) is onto, \(X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) \). Thus \(X = f^{-1}(A) \cup f^{-1}(B) \) where \(f^{-1}(A) \) and \(f^{-1}(B) \) are nonempty \(\Lambda_r \)-open sets in \(X \) such that \(f^{-1}(A) \cap f^{-1}(B) = \emptyset \). By Definition 4.1, \(X \) is \(\Lambda_r \)-disconnected. This contradiction shows that \(Y \) is connected. This proves (i).

Suppose that \(Y \) is \(\Lambda_r \)-disconnected. Then by Definition 4.1, there exists a pair \(A, B \) of nonempty disjoint \(\Lambda_r \)-open sets in \(Y \) such that \(Y = A \cup B \). Since \(f \) is \(\Lambda_r \)-irresolute, by Definition 5.15, \(f^{-1}(A) \) and \(f^{-1}(B) \) are \(\Lambda_r \)-open in \(X \). Since \(f \) is onto, \(f^{-1}(A) \) and \(f^{-1}(B) \) are nonempty subsets of \(X \) and \(X = f^{-1}(Y) \). Thus we have \(X = f^{-1}(A) \cup f^{-1}(B) \) where \(f^{-1}(A) \) and \(f^{-1}(B) \) are disjoint nonempty \(\Lambda_r \)-open sets in \(X \). Hence \(X \) is \(\Lambda_r \)-disconnected, which is a contradiction. Therefore \(Y \) is \(\Lambda_r \)-connected. This proves (ii).

Let \(\{A_i : i \in I\} \) be a \(\Lambda_r \)-open cover of \(Y \). Then by Definition 5.15, we have \(\{f^{-1}(A_i) : i \in I\} \) is a \(\Lambda_r \)-open cover of \(X \). Since \(X \) is \(\Lambda_r \)-compact, by Definition 4.24, \(X \) has a finite subcover, say \(\{f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)\} \). Since \(f \) is onto, \(\{A_1, A_2, \ldots, A_n\} \) is a finite subcover of \(Y \) and so \(Y \) is \(\Lambda_r \)-compact. This proves (iii). \(\Box \)
Theorem 7.14.

If \(f : X \rightarrow Y \) is surjective, \(\Lambda_r \)-irresolute and \(E \) is a \(\Lambda_r \)-difference set in \(Y \), then \(f^{-1}(E) \) is a \(\Lambda_r \)-difference set in \(X \).

Proof.

If \(E \) is a \(\Lambda_r \)-difference set in \(Y \), then by Definition 3.31, there exists \(\Lambda_r \)-open sets \(U \) and \(V \) in \(Y \) such that \(E = U \setminus V \) and \(U \neq Y \). By Definition 5.15, \(f^{-1}(U) \) and \(f^{-1}(V) \) are \(\Lambda_r \)-open in \(X \). Since \(f \) is surjective and \(U \neq Y \), \(f^{-1}(U) \neq X \) and so \(f^{-1}(E) = f^{-1}(U) \setminus f^{-1}(V) \) is a \(\Lambda_r \)-difference set in \(X \). \(\square \)

Theorem 7.15.

If \(f : X \rightarrow Y \) is bijective, \(\Lambda_r \)-irresolute and \(Y \) is \(\Lambda_r \)-\(D_1 \), then \(X \) is \(\Lambda_r \)-\(D_1 \).

Proof.

Let \(x, y \in X \) with \(x \neq y \). Since \(f \) is injective, \(f(x) \neq f(y) \) in \(Y \). Since \(Y \) is \(\Lambda_r \)-\(D_1 \), by Definition 3.35(ii), there exists \(\Lambda_r \)-difference sets \(G_x \) and \(G_y \) in \(Y \) such that \(f(x) \in G_x \), \(f(y) \notin G_x \) and \(f(y) \in G_y \), \(f(x) \notin G_y \). By Theorem 7.14, \(f^{-1}(G_x) \) and \(f^{-1}(G_y) \) are \(\Lambda_r \)-difference sets in \(X \). Also we have \(x \in f^{-1}(G_x) \), \(y \notin f^{-1}(G_x) \) and \(y \in f^{-1}(G_y) \), \(x \notin f^{-1}(G_y) \). This shows that \(X \) is \(\Lambda_r \)-\(D_1 \). \(\square \)

Theorem 7.16.

A space \(X \) is \(\Lambda_r \)-\(D_1 \) if and only if for each pair of distinct points \(x, y \) in \(X \), there exists a \(\Lambda_r \)-irresolute surjective function \(f : X \rightarrow Y \) where \(Y \) is \(\Lambda_r \)-\(D_1 \) such that \(f(x) \neq f(y) \).

Proof.

Suppose \(X \) is a \(\Lambda_r \)-\(D_1 \) space. Let \(x, y \in X \) such that \(x \neq y \). Define \(f : X \rightarrow X \) by \(f(x) = x \), for every \(x \in X \). Then \(f \) is \(\Lambda_r \)-irresolute, surjective and \(f(x) \neq f(y) \). Conversely, suppose the condition holds. Let \(x \) and \(y \) be any pair of distinct points in \(X \). Then by hypothesis, there exists a \(\Lambda_r \)-irresolute, surjective function \(f : X \rightarrow Y \)
where Y is $\Lambda_r\text{-}D_1$ such that $f(x) \neq f(y)$ which implies that f is Λ_r-irresolute, bijective and Y is $\Lambda_r\text{-}D_1$ and so by Theorem 7.15, X is $\Lambda_r\text{-}D_1$.

\[\square \]

\textbf{Theorem 7.17.}

If $f : X \to Y$ is a Λ_r-continuous function where X is Λ_r-connected and Y is a discrete space with atleast two points, then f is a constant function.

\textbf{Proof.}

Let $f : X \to Y$ be a Λ_r-continuous function from a Λ_r-connected space X into a discrete topological space Y. Then for each $y \in Y$, $\{y\}$ is both open and closed in Y. Since f is Λ_r-continuous, by Definition 5.1 and Theorem 5.5, $f^{-1}(y)$ is both Λ_r-open and Λ_r-closed in X which implies that X is covered by Λ_r-open and Λ_r-closed covering $\{f^{-1}(y) : y \in Y\}$. Since X is Λ_r-connected, by Theorem 4.3, $f^{-1}(y) = \emptyset$ or X for each $y \in Y$. If $f^{-1}(y) = \emptyset$ for each $y \in Y$, then f fails to be a map. Hence there exists only one point $y \in Y$ such that $f^{-1}(y) = X$ which shows that f is a constant function.

\[\square \]

\textbf{Theorem 7.18.}

If $f : X \to Y$ is Λ_r-irresolute and a subset B of X is Λ_r-compact relative to X, then the image $f(B)$ is Λ_r-compact relative to Y.

\textbf{Proof.}

Let $\{A_i : i \in I\}$ be a Λ_r-open cover of $f(B)$. Then $f(B) \subseteq \cup \{A_i : i \in I\}$ and hence $B \subseteq \cup \{f^{-1}(A_i) : i \in I\}$ where each $f^{-1}(A_i)$ is Λ_r-open in X since f is Λ_r-irresolute and so $\{f^{-1}(A_i) : i \in I\}$ is a Λ_r-open cover of B. By Definition 4.25, there exists a finite subset I_0 of I such that $B \subseteq \cup \{f^{-1}(A_i) : i \in I_0\}$. Then we have $f(B) \subseteq \cup \{A_i : i \in I_0\}$. This shows that $f(B)$ is Λ_r-compact relative to Y.

\[\square \]
Theorem 7.19.

Let \(f : X \to Y \) be a \(\Lambda_r \)-continuous function from a \(\Lambda_r \)-compact space \(X \) onto a space \(Y \). Then \(Y \) is compact.

Proof.

If \(\{ A_i : i \in I \} \) is an open cover of \(Y \), then by Definition 5.1, \(\{ f^{-1}(A_i) : i \in I \} \) is a \(\Lambda_r \)-open cover of \(X \). Since \(X \) is \(\Lambda_r \)-compact, it has a finite subcover, say \(\{ f^{-1}(A_1), f^{-1}(A_2),..., f^{-1}(A_n) \} \). Since \(f \) is onto, \(\{ A_1, A_2, ..., A_n \} \) is an open cover of \(Y \) and so \(Y \) is compact. \(\Box \)

Conclusion

The properties of \(\Lambda_r \)-homeomorphisms and \(\Lambda_r^* \)-homeomorphisms are investigated and it has been proved that the set of all \(\Lambda_r^* \)-homeomorphisms from a topological space \(X \) to itself, is a group under composition of functions. Some preservation theorems are also established in this chapter.