CHAPTER IV

Λ_r-Connectedness and Λ_r-Compactness

Connectedness and Compactness constitute the most important classes of topological spaces. In this chapter, the concepts of Λ_r-connected and Λ_r-compact spaces are introduced and their basic properties are investigated.

Λ_r-connected spaces

Definition 4.1.

A space X is said to be Λ_r-connected if there does not exist a pair A, B of nonempty disjoint Λ_r-open subsets of X such that X = A ∪ B, otherwise X is called Λ_r-disconnected. In this case, the pair (A, B) is called a Λ_r-disconnection of X.

Theorem 4.2.

Every Λ_r-connected space is connected but the converse is not true.

Proof.

Let X be a Λ_r-connected space. If possible, let X be not connected. Then there exists nonempty disjoint open sets A and B in X such that X = A ⊔ B. By Proposition 2.5(ii), A and B are Λ_r-open sets in X. By Definition 4.1, it follows that X is Λ_r-disconnected. This contradiction proves that X is connected. Converse is not true as seen in the following example. If \(X = \{a,d\} \cup \{b,c\} \), then \(\Lambda_r \text{O}(X, \tau) = \{\emptyset, \{a\}, \{a,d\}, \{b,c\}, \{a,b,c\}, \{b,c,d\}, X\} \). Here \((X, \tau) \) is connected. Since \(X = \{a,d\} \cup \{b,c\} \) where \(\{a,d\} \) and \(\{b,c\} \) are two nonempty disjoint \(\Lambda_r \)-open sets in \((X, \tau) \), X is \(\Lambda_r \)-disconnected.

Theorem 4.3.

A space X is Λ_r-connected if and only if the only subsets of X which are both Λ_r-open and Λ_r-closed are the sets X and \(\emptyset \).
Proof.

Suppose X is Λ_r-connected. Let U be both a Λ_r-open and a Λ_r-closed subset of X. Then X \ U is both Λ_r-open and Λ_r-closed. Since X is the disjoint union of Λ_r-open sets U and X \ U, by hypothesis, one of these must be empty. Hence either U = Ø or U = X.

Conversely, suppose the only subsets of X which are both Λ_r-open and Λ_r-closed are the sets X and Ø. If X is Λ_r-disconnected, then by Definition 4.1, there exists nonempty disjoint Λ_r-open sets A and B in X such that X = A \ B. Since B = X \ A is Λ_r-open, A is both Λ_r-open and Λ_r-closed and so by hypothesis, A = Ø or X which implies that either A = Ø or B = Ø. This contradiction shows that X is Λ_r-connected. □

Theorem 4.4 characterizes Λ_r-connectedness in terms of Λ_r-frontier.

Theorem 4.4.

A space X is Λ_r-connected if and only if every nonempty proper subset of X has a nonempty Λ_r-frontier.

Proof.

Suppose X is Λ_r-connected and A is a proper nonempty subset of X. If possible, let $\Lambda_r Fr(A) = \emptyset$. Then by Theorem 2.31(v), $\Lambda_r cl(A) \cap \Lambda_r cl(X \setminus A) = \emptyset$ which implies that $\Lambda_r cl(A) \subseteq X \setminus (\Lambda_r cl(X \setminus A))$. By applying Theorem 2.22(viii), it follows that $\Lambda_r cl(A) \subseteq \Lambda_r int(A)$. Since $\Lambda_r int(A) \subseteq A \subseteq \Lambda_r cl(A)$, $\Lambda_r int(A) = A = \Lambda_r cl(A)$ and so by Theorem 2.22(vi) and Proposition 2.11(iv), A is both Λ_r-open and Λ_r-closed. By Theorem 4.3, X is Λ_r-disconnected. This contradiction proves that A has a nonempty Λ_r-frontier.

Conversely, suppose every nonempty proper subset of X has a nonempty Λ_r-frontier. If X is Λ_r-disconnected, then by Definition 4.1, there exists nonempty
disjoint \(\Lambda_r \)-open sets \(A \) and \(B \) in \(X \) such that \(X = A \cup B \). Since \(B = X \setminus A \) is \(\Lambda_r \)-open, \(A \) is both \(\Lambda_r \)-open and \(\Lambda_r \)-closed. By Theorem 2.22(vi), \(A = \Lambda_r \text{int}(A) \) and by Proposition 2.11(iv), \(A = \Lambda_r \text{cl}(A) \). Then by applying Theorem 2.31(v) and Theorem 2.22(v), \[\Lambda_r \text{Fr}(A) = \Lambda_r \text{cl}(A) \cap \Lambda_r \text{cl}(X \setminus A) = A \cap (X \setminus \Lambda_r \text{int}(A)) = A \cap (X \setminus A) = \emptyset \] which implies that \(A \) has empty \(\Lambda_r \)-frontier. This contradiction shows that \(X \) is \(\Lambda_r \)-connected. \(\square \)

Definition 4.5.

Let \((X, \tau)\) be a space and \(A \) be a subset of \(X \). Then the class of \(\Lambda_r \)-open sets in \(A \) is defined by \(\Lambda_r O(A) = \{G \subseteq X : G = A \cap O \text{ and } O \text{ is } \Lambda_r \text{-open in } (X, \tau)\} \). That is, \(G \) is \(\Lambda_r \)-open in \(A \) if and only if \(G = A \cap O \) where \(O \) is \(\Lambda_r \)-open in \((X, \tau) \).

Definition 4.6.

A subset \(B \) of a space \(X \) is \(\Lambda_r \)-connected if there does not exist a pair \(B_1, B_2 \) of nonempty disjoint \(\Lambda_r \)-open sets in \(B \) such that \(B = B_1 \cup B_2 \), otherwise \(B \) is called \(\Lambda_r \)-disconnected. In this case, the pair \((B_1, B_2) \) is called a \(\Lambda_r \)-disconnection of \(B \).

Theorem 4.7.

Let \(X \) be a \(\Lambda_r \)-disconnected space and \(C \) be a \(\Lambda_r \)-connected subset of \(X \). If \((A, B) \) is a \(\Lambda_r \)-disconnection of \(X \), then \(C \) is contained in \(A \) or in \(B \).

Proof.

Suppose that \(C \) is neither contained in \(A \) nor in \(B \). Since \((A, B) \) is a \(\Lambda_r \)-disconnection of \(X \), by Definition 4.1, \(A \) and \(B \) are nonempty disjoint \(\Lambda_r \)-open sets in \(X \) such that \(X = A \cup B \). By Definition 4.5, \(C \cap A \) and \(C \cap B \) are both nonempty \(\Lambda_r \)-open sets in \(C \). Then we obtain that \((C \cap A) \cap (C \cap B) = \emptyset \) and \((C \cap A) \cup (C \cap B) = C \). This gives that \((C \cap A, C \cap B) \) is a \(\Lambda_r \)-disconnection of \(C \) which implies \(C \) is \(\Lambda_r \)-disconnected. This contradiction proves the theorem. \(\square \)
Theorem 4.8.

Let X be a space and $\{X_\alpha\}, \alpha \in I$ be a Λ_r-connected subsets of X such that

$$X = \bigcup_{\alpha \in I} \{X_\alpha\} \text{ and } \bigcap_{\alpha \in I} \{X_\alpha\} \neq \emptyset.$$

Then X is Λ_r-connected.

Proof.

Suppose X is Λ_r-disconnected and (A, B) is a Λ_r-disconnection of X. Since each X_α is Λ_r-connected, by Theorem 4.7, $X_\alpha \subseteq A$ or $X_\alpha \subseteq B$. Since $\bigcap_{\alpha \in I} \{X_\alpha\} \neq \emptyset$, all X_α are contained in A or in B. This gives that $X \subseteq A$ or $X \subseteq B$. If $X \subseteq A$, then $B = \emptyset$ or if $X \subseteq B$, then $A = \emptyset$. This contradiction proves that X is Λ_r-connected. \qed

Theorem 4.9.

A space X is Λ_r-connected if and only if for every pair of points x, y in X, there is a Λ_r-connected subset of X which contains both x and y.

Proof.

Suppose X is a Λ_r-connected space. Since X itself contains these two points, it is obvious.

Conversely, suppose that for any two points x and y of X, there is a Λ_r-connected subset C_{xy} of X such that $x, y \in C_{xy}$. Let $a \in X$ be a fixed point and $\{C_{a,x} : x \in X\}$ be a class of all Λ_r-connected subsets of X which contain the points a and x. Then $X = \bigcup_{x \in X} \{C_{a,x}\}$ and $\bigcap_{x \in X} \{C_{a,x}\} \neq \emptyset$. By Theorem 4.8, X is Λ_r-connected. \qed

Definition 4.10.

Let X be a space and A be a Λ_r-connected subset of X. Then A is said to be maximal Λ_r-connected if there exists no Λ_r-connected subset B of X such that $A \subseteq B$. A maximal Λ_r-connected subset of a space X is called a Λ_r-component of X.
Remark 4.11.

If a space X itself Λ_r-connected, then X is the only Λ_r-component of X.

Theorem 4.12.

Each Λ_r-connected subset of a space X is contained in exactly one Λ_r-component of X.

Proof.

Let A be a Λ_r-connected subset of a space X which is not a Λ_r-component of X. Suppose C_1 and C_2 are the two Λ_r-components of X such that $A \subseteq C_1$ and $A \subseteq C_2$. Then $C_1 \cap C_2 \neq \emptyset$. Put $C = C_1 \cup C_2$. By Theorem 4.8, C is a Λ_r-connected set which contains C_1 as well as C_2, a contradiction to the fact that C_1 and C_2 are Λ_r-components. This contradiction shows that A is contained in exactly one Λ_r-component of X. \qed

Theorem 4.13.

Let X be a space. Then for each $x \in X$, there is exactly one Λ_r-component of X containing x.

Proof.

Let $x \in X$ and $\{C_\alpha : \alpha \in I\}$ a class of all Λ_r-connected subsets of X containing x. Put $C = \bigcup_{\alpha \in I} C_\alpha$. Then by Theorem 4.8, C is Λ_r-connected and $x \in C$. By Theorem 4.12, C is contained in exactly one Λ_r-component of X. Let C^* be the Λ_r-component of X such that $C \subseteq C^*$. Then $x \in C^*$ and hence C^* is one of the C_α’s which implies $C^* \subseteq C$. Consequently, $C = C^*$. This proves that C is the only Λ_r-component of X which contains x. \qed

Next we give some examples of Λ_r-connected spaces which are independent with the separation axioms Λ_r-T_0, Λ_r-T_1, Λ_r-T_2, Λ_r-R_0, Λ_r-R_1, Λ_r-D_0, Λ_r-D_1, Λ_r-D_2, Λ_r-regular and Λ_r-normal.
Example 4.14.

If $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$, then $\Lambda_rO(X, \tau) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Here (X, τ) is Λ_rT_0 but Λ_r-disconnected. If $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{c\}, X\}$, then $\Lambda_rO(X, \tau) = \tau$. Here (X, τ) is Λ_r-connected but not Λ_rT_0. This shows that the concepts of Λ_rT_0 and Λ_r-connected spaces are independent.

Example 4.15.

If $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$, then $\Lambda_rO(X, \tau) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{a, b\}, X\}$. Here (X, τ) is Λ_rT_1 but Λ_r-disconnected. If $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{b\}, X\}$, then $\Lambda_rO(X, \tau) = \tau$. Here (X, τ) is Λ_r-connected but not Λ_rT_1. This shows that the concepts of Λ_rT_1 and Λ_r-connected spaces are independent.

Example 4.16.

If $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$, then $\Lambda_rO(X, \tau) = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b\}, X\}$. Here (X, τ) is Λ_rT_2 but Λ_r-disconnected. If $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, c\}, X\}$, then $\Lambda_rO(X, \tau) = \tau$. Here (X, τ) is Λ_r-connected but not Λ_rT_2. This shows that the concepts of Λ_rT_2 and Λ_r-connected spaces are independent.

Example 4.17.

If $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$, then $\Lambda_rO(X, \tau) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}, \{a, c, d\}, X\}$. Here (X, τ) is Λ_rR_0 but Λ_r-disconnected. If $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, X\}$, then $\Lambda_rO(X, \tau) = \tau$. Here (X, τ) is Λ_r-connected but not Λ_rR_0. This shows that the concepts of Λ_rR_0 and Λ_r-connected spaces are independent.
Example 4.18.

If \(X = \{a,b,c\} \) and \(\tau = \{\emptyset,\{b\},\{a,c\},X\} \), then \(\Lambda_r O(X,\tau) = \tau \). Here \((X,\tau)\) is \(\Lambda_r\)-\(R_1\) but \(\Lambda_r\)-disconnected. If \(X = \{a,b,c\} \) and \(\tau = \{\emptyset,\{c\},\{b,c\},X\} \), then \(\Lambda_r O(X,\tau) = \tau \). Here \((X,\tau)\) is \(\Lambda_r\)-connected but not \(\Lambda_r\)-\(R_1\). This shows that the concepts of \(\Lambda_r\)-\(R_1\) and \(\Lambda_r\)-connected spaces are independent.

Example 4.19.

If \(X = \{a,b,c\} \) and \(\tau = \{\emptyset,\{a\},\{a,b\},\{a,c\},X\} \), then \(\Lambda_r O(X,\tau) = \tau \). Here \((X,\tau)\) is \(\Lambda_r\)-\(D_0\) but \(\Lambda_r\)-disconnected. If \(X = \{a,b,c,d,e\} \) and \(\tau = \{\emptyset,\{a\},\{a,b\},\{a,c,d\},\{a,b,d\},\{a,b,c,d\},X\} \), then \(\Lambda_r O(X,\tau) = \tau \). Here \((X,\tau)\) is \(\Lambda_r\)-connected but not \(\Lambda_r\)-\(D_0\). This shows that the concepts of \(\Lambda_r\)-\(D_0\) and \(\Lambda_r\)-connected spaces are independent.

Example 4.20.

If \(X = \{a,b,c\} \) and \(\tau = \{\emptyset,\{a\},\{a,b\},\{b,c\},X\} \), then \(\Lambda_r O(X,\tau) = \tau \). Here \((X,\tau)\) is \(\Lambda_r\)-\(D_1\) but \(\Lambda_r\)-disconnected. If \(X = \{a,b,c,d\} \) and \(\tau = \{\emptyset,\{a\},\{a,c\},\{a,b,d\},X\} \), then \(\Lambda_r O(X,\tau) = \tau \). Here \((X,\tau)\) is \(\Lambda_r\)-connected but not \(\Lambda_r\)-\(D_1\). This shows that the concepts of \(\Lambda_r\)-\(D_1\) and \(\Lambda_r\)-connected spaces are independent.

Example 4.21.

If \(X = \{a,b,c\} \) and \(\tau = \{\emptyset,\{a\},\{c\},\{a,c\},\{a,b\},X\} \), then \(\Lambda_r O(X,\tau) = \tau \). Here \((X,\tau)\) is \(\Lambda_r\)-\(D_2\) but \(\Lambda_r\)-disconnected. If \(X = \{a,b\} \) and \(\tau = \{\emptyset,\{a\},X\} \), then \(\Lambda_r O(X,\tau) = \tau \). Here \((X,\tau)\) is \(\Lambda_r\)-connected but not \(\Lambda_r\)-\(D_2\). This shows that the concepts of \(\Lambda_r\)-\(D_2\) and \(\Lambda_r\)-connected spaces are independent.

Example 4.22.

If \(X = \{a,b,c,d\} \) and \(\tau = \{\emptyset,\{a\},\{b,c,d\},X\} \), then \(\Lambda_r O(X,\tau) = \tau \). Here \((X,\tau)\) is \(\Lambda_r\)-regular but \(\Lambda_r\)-disconnected. If \(X = \{a,b,c,d\} \) and \(\tau = \{\emptyset,\{b,d\},\{b,c,d\},\{a,b,d\},X\} \), then \(\Lambda_r O(X,\tau) = \tau \). Here \((X,\tau)\) is \(\Lambda_r\)-connected but not
Λₜ-regular. This shows that the concepts of Λₜ-regular and Λₜ-connected spaces are independent.

Example 4.23.

If \(X = \{a,b,c,d\} \) and \(\tau = \{\emptyset,\{a\},\{b,c\},\{a,b,c\},X\} \), then \(\Lambda_{o}(X, \tau) = \{\emptyset, \{a\}, \{a,d\}, \{b,c\}, \{a,b,c\}, \{b,c,d\}, X\} \). Here \((X, \tau)\) is Λₜ-normal but Λₜ-disconnected.

If \(X = \{a,b,c,d\} \) and \(\tau = \{\emptyset,\{a\},\{a,b\},\{a,c\},\{a,d\},\{a,b,c\},\{a,b,d\},\{a,c,d\},X\} \), then \(\Lambda_{o}(X, \tau) = \tau \). Here \((X, \tau)\) is Λₜ-connected but not Λₜ-normal. This shows that the concepts of Λₜ-normal and Λₜ-connected spaces are independent.

From the above examples, we get the following diagram

\[
\begin{array}{c}
\Lambda_{t}\text{-regular} \\
\Lambda_{t}\text{-normal} \\
\Lambda_{t}\text{-R}_{1} \\
\Lambda_{t}\text{-T}_{0} \\
\Lambda_{t}\text{-connected} \\
\Lambda_{t}\text{-R}_{0} \\
\Lambda_{t}\text{-T}_{1} \\
\Lambda_{t}\text{-R}_{2} \\
\Lambda_{t}\text{-D}_{0} \\
\Lambda_{t}\text{-D}_{1} \\
\Lambda_{t}\text{-D}_{2}
\end{array}
\]

In this diagram, \(A \leftrightarrow B \) means \(A \) and \(B \) are independent to each other.

Λₜ-compact spaces

Definition 4.24.

A space \(X \) is said to be Λₜ-compact if every Λₜ-open cover of \(X \) has a finite subcover.

Definition 4.25.

A subset \(B \) of a space \(X \) is said to be Λₜ-compact relative to \(X \) if for every cover \(\{A_{i} : i \in I\} \) of \(B \) by Λₜ-open subsets of \(X \), there exists a finite subset \(I_0 \) of \(I \) such that \(B \subseteq \bigcup \{A_{i} : i \in I_0\} \).

A space X is Λ_r-compact if and only if for every family $\{F_\alpha : \alpha \in I\}$ of Λ_r-closed sets with finite intersection property, $\bigcap_{\alpha \in I} F_\alpha \neq \emptyset$.

Proof.

Suppose X is a Λ_r-compact space. Let $\{F_\alpha : \alpha \in I\}$ be a family of Λ_r-closed subsets of X with finite intersection property such that $\bigcap_{\alpha \in I} F_\alpha = \emptyset$. Let us consider the Λ_r-open sets $U_\alpha = X \setminus F_\alpha$. Then $\bigcup \{U_\alpha : \alpha \in I\} = \bigcup \{X \setminus F_\alpha : \alpha \in I\} = X \setminus \bigcap \{F_\alpha : \alpha \in I\} = X \setminus \emptyset = X$. Hence $\{U_\alpha : \alpha \in I\}$ is a Λ_r-open cover of X.

Since X is Λ_r-compact, by Definition 4.24, it has a finite subcover $\{U_{\alpha_i} : \alpha_i \in I_0\}$. Then we have $X = \bigcup \{U_{\alpha_i} : \alpha_i \in I_0\} = \bigcup \{X \setminus F_{\alpha_i} : \alpha_i \in I_0\} = X \setminus \bigcap \{F_{\alpha_i} : \alpha_i \in I_0\}$ which implies $\bigcap \{F_{\alpha_i} : \alpha_i \in I_0\} = \emptyset$, a contradiction to the fact that $\{F_\alpha : \alpha \in I\}$ satisfies finite intersection property. Thus, if the family $\{F_\alpha : \alpha \in I\}$ of Λ_r-closed sets with finite intersection property, then $\bigcap_{\alpha \in I} F_\alpha \neq \emptyset$.

Conversely, suppose for every family $\{F_\alpha : \alpha \in I\}$ of Λ_r-closed sets with finite intersection property, $\bigcap_{\alpha \in I} F_\alpha \neq \emptyset$. Let $\{U_\alpha : \alpha \in I\}$ be a Λ_r-open cover of X. Then $X = \bigcup \{U_\alpha : \alpha \in I\}$ and $\emptyset = X \setminus \bigcup \{U_\alpha : \alpha \in I\} = X \setminus \bigcap \{X \setminus U_\alpha : \alpha \in I\}$ which implies that $\{X \setminus U_\alpha : \alpha \in I\}$ is a family of Λ_r-closed sets with an empty intersection. By hypothesis, there exists a finite subfamily $\{X \setminus U_{\alpha_i} : \alpha_i \in I_0\}$ such that $\bigcap \{X \setminus U_{\alpha_i} : \alpha_i \in I_0\} = \emptyset$. Then we have $X = X \setminus \bigcup \{X \setminus U_{\alpha_i} : \alpha_i \in I_0\}$ implies $X \setminus U_{\alpha_i} \in I_0)$ implies $X = \bigcup \{X \setminus U_{\alpha_i} : \alpha_i \in I_0\}$. Thus $\{U_{\alpha_i} : \alpha_i \in I_0\}$ is a finite subcover of X. This shows that X is Λ_r-compact. □
Theorem 4.27.

A space X is Λ_r-compact if and only if every proper Λ_r-closed subset of X is Λ_r-compact relative to X.

Proof.

Suppose X is a Λ_r-compact space. Let A be any proper Λ_r-closed subset of X. Then $X \setminus A$ is Λ_r-open in X. Suppose $\{G_\alpha : \alpha \in I\}$ is a Λ_r-open cover of A. Then $\{G_\alpha : \alpha \in I\} \cup (X \setminus A)$ is a Λ_r-open cover of X. Since X is Λ_r-compact, by Definition 4.24, it has a finite subcover, say $\{G_1, G_2, \ldots, G_n\}$. If this subcover contains $X \setminus A$, we discard it. Otherwise leave the subcover as it is. Thus we have obtained a finite Λ_r-open subcover of A and so by Definition 4.25, A is Λ_r-compact relative to X.

Conversely, suppose every proper Λ_r-closed subset of X is Λ_r-compact relative to X. Let $\{V_\alpha : \alpha \in I\}$ be a Λ_r-open cover of X. Then $X = \bigcup \{V_\alpha : \alpha \in I\}$. We fix one $\alpha_0 \in I$. Then $X \setminus V_{\alpha_0}$ is a proper Λ_r-closed subset of X and $X \setminus V_{\alpha_0} \subseteq \bigcup \{V_\alpha : \alpha \in I \setminus \{\alpha_0\}\}$. Hence $\{V_\alpha : \alpha \in I \setminus \{\alpha_0\}\}$ is a Λ_r-open cover of $X \setminus V_{\alpha_0}$. By the hypothesis, there exists a finite subset I_0 of $I \setminus \{\alpha_0\}$ such that $X \setminus V_{\alpha_0} \subseteq \{V_\alpha : \alpha \in I_0\}$. Then $X \subseteq \bigcup \{V_\alpha : \alpha \in I_0 \cup \{\alpha_0\}\}$. This shows that X is Λ_r-compact.

\square

Conclusion

Λ_r-connected subsets and Λ_r-compact subsets of a space X relative to the given topology are characterized. For example, a space X is Λ_r-connected if and only if the only subsets of X which are both Λ_r-open and Λ_r-closed are the sets X and \emptyset. Also a space X is Λ_r-compact if and only if every proper Λ_r-closed subset of X is Λ_r-compact relative to X.