CHAPTER - 7

m-I-SUBMAXIMAL IDEAL MINIMAL SPACES

7.1 INTRODUCTION

The concept of submaximality of general topological spaces was introduced by Hewitt [31] in 1943. He discovered a general way of constructing maximal topologies. In [4], Alas et al proved that there can be no dense maximal subspace in a product of first countable spaces, while under Booth’s Lemma there exists a dense submaximal subspaces in $[0, 1]^\omega$. It is established that under the axiom of constructibility any submaximal Hausdorff space is σ-discrete. Any homogeneous submaximal space is strongly σ-discrete if there are no measurable cardinals. The first systematic study of submaximal spaces was undertaken in the paper of Arhangel’skii and Collins [5]. They gave various necessary and sufficient conditions for a space to be submaximal and showed that every submaximal space is left-separated. This led to the question whether every submaximal space is σ-discrete [5]. The notion of ideal topological spaces was studied by Kuratowski [35] and Vaidyanathaswamy [85]. In 1990, Jankovic and Hamlett [33] investigated further properties of ideal topological spaces. In [16], properties of I-submaximal ideal topological spaces is studied. Quite Recently, the notion of ideal minimal spaces is studied by Ozbakir and Yildirim [63]. In this chapter, several characterizations and properties of m-I-submaximal ideal minimal spaces are obtained.

7.2 PRELIMINARIES
Theorem 7.2.1 [63]

Let \((X, m_x)\) be a minimal space with \(I, I'\) ideals on \(X\) and \(A, B\) be subsets of \(X\). Then

(i) \(A \subseteq B \Rightarrow A^*_m \subseteq B^*_m\)

(ii) \(I \subseteq I' \Rightarrow A^*_m(I') \subseteq A^*_m(I)\)

(iii) \(A^*_m = m_x-\text{Cl}(A^*_m) \subseteq m_x-\text{Cl}(A)\),

(iv) \(A^*_m \cup B^*_m \subseteq (A \cup B)^*_m\)

(v) \((A^*_m)_m \subseteq A^*_m\).

Remark 7.2.2 [63]

If \((X, m_x)\) has property \(I\), then \(A^*_m \cup B^*_m = (A \cup B)^*_m\).

Throughout the chapter we simply write \(m^*_x\) for \(m^*_x(I, m_x)\). If \(I\) is an ideal on \(X\), then \((X, m_x, I)\) is called an ideal minimal space (or an ideal m-space).

Proposition 7.2.3 [63]

(i) If \(A \subseteq B\), then \(m-\text{Cl}^*(A) \subseteq m-\text{Cl}^*(B)\),

(ii) \(m-\text{Cl}^*(A) \cup m-\text{Cl}^*(B) \subseteq m-\text{Cl}^*(A \cup B)\).

Remark 7.2.4 [63]

If \((X, m_x)\) has property \(I\), then \(m-\text{Cl}^*(m-\text{Cl}^*(A)) = m-\text{Cl}^*(A)\) and \(m-\text{Cl}^*(A) \cup m-\text{Cl}^*(B) = m-\text{Cl}^*(A \cup B)\).

Definition 7.2.5 [63]
A subset \(A \) of an ideal minimal space \((X, m_x, I)\) is \(m^*\)-dense in itself (resp. \(m^*\)-perfect, \(m^*\)-closed) if \(A \subseteq A^*_m \) (resp. \(A^*_m = A, \ A^*_m \subseteq A \)).

Remark 7.2.6 [63]

A subset \(A \) of an ideal minimal space \((X, m_x, I)\) is \(m^*\)-closed if and only if \(A^*_m \subseteq A \).

Definition 7.2.7 [63]

A mapping \(f : (X, m_x) \rightarrow (Y, m_y) \) is said to be \(M\)-open if for each \(U \in m_x, \ f(U) \in m_y \).

7.3. ON SUBSETS OF IDEAL MINIMAL SPACES

Definition 7.3.1

A subset \(A \) of an ideal \(m\)-space \((X, m_x, I)\) is called

(i) \(\alpha\)-\(m\)-I-open if \(A \subseteq m\)-Int\((m\)-\(Cl^*(m\)-Int\((A))\)),

(ii) \(\text{pre-}m\)-I-open if \(A \subseteq m\)-Int\((m\)-\(Cl^*(A))\)),

(iii) \(\text{semi-}m\)-I-open if \(A \subseteq m\)-\(Cl^*(m\)-Int\((A))\)),

(iv) strongly \(\beta\)-\(m\)-I-open if \(A \subseteq m\)-\(Cl^*(m\)-\(Cl^*(m\)-Int\((A))\)),

(v) \(m^*\)-dense if \(m\)-\(Cl^*(A) = X\).

Lemma 7.3.2

(i) Every \(m^*\)-dense set is \(\text{pre-}m\)-I-open.

(ii) Every \(m^*\)-dense set is strongly \(\beta\)-\(m\)-I-open.

Proof

(i) Let \(A \) be \(m^*\)-dense. Then \(m\)-\(Cl^*(A) = X\). We have \(m\)-\(Int(m\)-\(Cl^*(A)) = X \supseteq A \). It shows that \(A \) is \(\text{pre-}m\)-I-open.
(ii) Let \(A \) be \(m^* \)-dense set. Then \(m\text{-Cl}^*(A) = X \). We have \(m\text{-Cl}^*(m\text{-Int}(m\text{-Cl}^*(A))) = X \supseteq A \). This shows that \(A \) is strongly \(\beta \)-m-I-open.

Lemma 7.3.3

Let \(A \) be a subset of an ideal m-space \((X, m_x, I)\) such that \(m\text{-Int}(m\text{-Cl}^*(A)) \in m_x \). Then if \(A \) is pre-m-I-open, then \(A = U \cap D \), where \(U \) is m-open and \(D \) is \(m^* \)-dense.

Proof

Let \(A \) be a pre-m-I-open, then we have \(A \subseteq m\text{-Int}(m\text{-Cl}^*(A)) = U \in m_x \). Let \(D = X - (U - A) = X - (U \cap A^c) = X \cap (U \cap A^c)^c = U^c \cup A = (X - U) \cup A \). Then \(D \) is \(m^* \)-dense since \(X = m\text{-Cl}^*(A) \cup (X - m\text{-Cl}^*(A)) \subseteq m\text{-Cl}^*(A) \cup (X - U) \subseteq m\text{-Cl}^*(A) \cup m\text{-Cl}^*(X - U) \subseteq m\text{-Cl}^*[X - U \cup A] = m\text{-Cl}^*(D) \). Also \(A = U \cap D \).

Lemma 7.3.4

For a subset \(A \) of an ideal m-space \((X, m_x, I)\), the following properties hold.

(i) Every \(\alpha \)-m-I-open set is semi-m-I-open.

(ii) Every \(\alpha \)-m-I-open set is pre-m-I-open.

(iii) Every semi-m-I-open set is strongly \(\beta \)-m-I-open.

(iv) Every pre-m-I-open set is strongly \(\beta \)-m-I-open.

Proof

(i) Let \(A \) be an \(\alpha \)-m-I-open, then we have \(A \subseteq m\text{-Int}(m\text{-Cl}^*(m\text{-Int}(A))) \subseteq m\text{-Cl}^*(m\text{-Int}(A)) \). This shows that \(A \) is semi-m-I-open.
(ii) Let A be an α-m-I-open, then we have $A \subseteq m$-$\text{Int}(m$-$\text{Cl}^*(m$-$\text{Int}(A))) \subseteq m$-$\text{Int}(m$-$\text{Cl}^*(A))$. This shows that A is pre-m-I-open.

(iii) Let A be a semi-m-I-open, then we have $A \subseteq m$-$\text{Cl}^*(m$-$\text{Int}(A)) \subseteq m$-$\text{Cl}^*(m$-$\text{Int}(m$-$\text{Cl}^*(A)))$. This shows that A is strongly β-m-I-open.

(iv) Let A be a pre-m-I-open, then we have $A \subseteq m$-$\text{Int}(m$-$\text{Cl}^*(A)) \subseteq m$-$\text{Cl}^*(m$-$\text{Int}(m$-$\text{Cl}^*(A)))$. This shows that A is strongly-β-m-I-open.

Lemma 7.3.5

Let (X, m_x, I) be an ideal m-space satisfying property I and $A \subseteq X$. Then A is α-m-I-open if and only if it is semi-m-I-open and pre-m-I-open.

Proof

Necessity. This is obvious.

Sufficiency. Since a set A is both semi-m-I-open and pre-m-I-open, we have $A \subseteq m$-$\text{Int}(m$-$\text{Cl}^*(A)) \subseteq m$-$\text{Int}(m$-$\text{Cl}^*(m$-$\text{Cl}^*(m$-$\text{Int}(A)))) = m$-$\text{Int}(m$-$\text{Cl}^*(m$-$\text{Int}(A)))$. Therefore A is α-m-I-open.

Proposition 7.3.6

Every m-open set is semi-m-I-open.

Proof

Let A be an m-open set in X. Then $A \subseteq m$-$\text{Cl}^*(A)$. Since $A = m$-$\text{Int}(A)$, $A \subseteq m$-$\text{Cl}^*(m$-$\text{Int}(A))$. This shows that A is semi-m-I-open.

Proposition 7.3.7
Every m-open set is pre-m-I-open.

Proof

Let A be an m-open set in X. Then $A \subseteq m-\text{Cl}^*(A) \Rightarrow m-\text{Int}(A) \subseteq m-\text{Int}(m-\text{Cl}^*(A))$. Since $A = m-\text{Int}(A)$, $A \subseteq m-\text{Int}(m-\text{Cl}^*(A))$. This shows that A is pre-m-I-open.

7.4. m-I-SUBMAXIMAL IDEAL MINIMAL SPACES

Definition 7.4.1

An ideal m-space (X, m_x, I) is called m-I-submaximal if every m^*-dense subset of X is m-open.

Theorem 7.4.2

Let A be a subset of (X, m_x, I) such that $m-\text{Int}(m-\text{Cl}^*(A)) \in m_x$. Let (X, m_x) have property I. Then the following conditions are equivalent.

(i) (X, m_x, I) is m-I-submaximal.

(ii) If A is pre-m-I-open set, then A is m-open.

Proof

(i) \Rightarrow (ii): Let A be pre-m-I-open set. Then, by Lemma 7.3.3, $A = U \cap D$ for some $U \in m_x$ and m^*-dense $D \subseteq X$. Since (X, m_x, I) is m-I-submaximal, $D \in m_x$. Then $A \in m_x$.
(ii) ⇒ (i): Let A be a m^*-dense subset of X. By Lemma 7.3.2, A is pre-m-I-open. By hypothesis, A is m-open and so the space is m-I-submaximal.

Theorem 7.4.3

Let A be a subset of (X, m_κ, I) such that m-$\text{Int}(m$-$\text{Cl}^*(A)) \in m_\kappa$. Let (X, m_κ) have property I. Then the following properties are equivalent:

(i) X is m-I-submaximal,

(ii) If A is pre-m-I-open set, then A is m-open,

(iii) If A is pre-m-I-open set, then A is semi-m-I-open and if α-m-I-open set, then A is m-open.

Proof

(i) \Leftrightarrow (ii): It follows from Theorem 7.4.2.

(ii) ⇒ (iii): Suppose that every pre-m-I-open set is m-open. Then every pre-m-I-open set is semi-m-I-open by Proposition 7.3.6. Let $A \subseteq X$ be an α-m-I-open set. Since every α-m-I-open set is pre-m-I-open, then by (ii), A is m-open.

(iii) ⇒ (i): Let A be a m^*-dense subset of X. Then by Lemma 7.3.2, A is pre-m-I-open. By (iii), A is also semi-m-I-open. Since a set is α-m-I-open if and only if it is semi-m-I-open and pre-m-I-open, then A is α-m-I-open. Thus, by (iii), A is m-open and hence X is m-I-submaximal.

Theorem 7.4.4
Let A be a subset of (X, m_x, I) such that $m\text{-Int}(m\text{-Cl}^*(A)) \in m_x$. Let (X, m_x) have property I. Then the following properties are equivalent:

(i) X is m-I-submaximal,

(ii) For all $A \subseteq X$, if $A \setminus m\text{-Int}(A) \neq \emptyset$, then $A \setminus m\text{-Int}(m\text{-Cl}^*(A)) \neq \emptyset$.

Proof

(i) \Rightarrow (ii): Let $A \subseteq X$ and $A \setminus m\text{-Int}(A) \neq \emptyset$. Suppose that $A \setminus m\text{-Int}(m\text{-Cl}^*(A)) = \emptyset$. Then $A \subseteq m\text{-Int}(m\text{-Cl}^*(A))$. This implies that A is pre-m-I-open. Since X is m-I-submaximal, by Theorem 7.4.2, A is m-open. Thus, $A \setminus m\text{-Int}(A) = A \setminus A = \emptyset$. This is a contradiction.

(ii) \Rightarrow (i): Let A be a pre-m-I-open set. Then $A \subseteq m\text{-Int}(m\text{-Cl}^*(A))$. Suppose that A is not m-open. Then $A \not\subseteq m\text{-Int}(A)$ and hence $A \setminus m\text{-Int}(A) \neq \emptyset$. By (ii), $A \setminus m\text{-Int}(m\text{-Cl}^*(A)) \neq \emptyset$. Thus, $A \not\subseteq m\text{-Int}(m\text{-Cl}^*(A))$. This is a contradiction.

Definition 7.4.5

A subset A of a minimal space (X, m_x) is called m-dense if $m\text{-Cl}(A) = X$.

Definition 7.4.6

A minimal space (X, m_x) is called m-submaximal space if each of its m-dense subset is m-open.

Theorem 7.4.7
Let $f : (X, m_x) \to (Y, m_y, I)$ be an M-open surjective mapping. If X is m-submaximal, then Y is m-I-submaximal.

Proof

Let X be m-submaximal and $A \subseteq Y$ be a m^*-dense set. Since $m_y \subseteq m_y^*$, then A is m-dense in Y. Since $f^1(A)$ is m-dense in X. $f^1(A)$ is m-open in X. Since f is an M-open surjective function, then $A = f(f^{-1}(A))$ is m-open in Y. Hence, Y is m-I-submaximal.

Definition 7.4.8

A subset A of an ideal m-space (X, m_x, I) is called m^*-codense if $X \setminus A$ is m^*-dense.

Theorem 7.4.9

For an ideal m-space (X, m_x, I), the following are equivalent:

(i) X is m-I-submaximal,

(ii) Every m^*-codense subset A of X is m-closed.

Proof

(i) \Rightarrow (ii): Let A be a m^*-codense subset of X. Since $X \setminus A$ is m^*-dense, then $X \setminus A$ is m-open. Then, A is m-closed.

(ii) \Rightarrow (i): It is similar to that of (i) \Rightarrow (ii).

Definition 7.4.10

A subset A of an ideal m-space (X, m_x, I) is called

(i) a t-m-I-set if $m\text{-Int}(A) = m\text{-Int}(m\text{-Cl}^*(A))$,

(ii) semi-m-I-regular if A is a t-m-I-set and semi-m-I-open,

(iii) an AB\textsubscript{m-I} set if \(A = U \cap V \), where \(U \in m_x \) and \(V \) is a semi-m-I-regular set.

Theorem 7.4.11

Suppose m-\(\text{Cl}^* \) is a Kuratowski closure operation. Let \(V \) be a subset of \((X, m_x, I)\) such that m-\(\text{Int}(V) \in m_x \). Let \((X, m_x)\) have property I. Then the following properties are equivalent:

(i) \(A \) is m-open.

(ii) \(A \) is a pre-m-I-open set and an AB\textsubscript{m-I} set.

Proof

(i) \(\Rightarrow \) (ii) Obvious.

(ii) \(\Rightarrow \) (i) Let \(A \) be a pre-m-I-open set and an AB\textsubscript{m-I} set. Then, since \(A \) is a pre-m-I-open set, \(A \subseteq m-\text{Int}(m-\text{Cl}^*(A)) \). Furthermore, because \(A \) is an AB\textsubscript{m-I} set, we have \(A = U \cap V \), where \(U \in m_x \) and \(V \) is a semi-m-I-regular set. Since m-\(\text{Cl}^* \) is a Kuratowski closure operation, \(A \subseteq m-\text{Int}(m-\text{Cl}^*(A)) = m-\text{Int}(m-\text{Cl}^*(U \cap V)) \subseteq m-\text{Int}(m-\text{Cl}^*(U) \cap m-\text{Cl}^*(V)) \subseteq m-\text{Int}(m-\text{Cl}^*(U)) \cap m-\text{Int}(m-\text{Cl}^*(V)) \). Hence \(A \subseteq m-\text{Int}(m-\text{Cl}^*(U)) \cap m-\text{Int}(m-\text{Cl}^*(V)) \). Since \(V \) is a semi-m-I-regular set, \(V \) is also a t-m-I-set. Thus \(m-\text{Int}(V) = m-\text{Int}(m-\text{Cl}^*(V)) \). We have \(A \subseteq m-\text{Int}(m-\text{Cl}^*(U)) \cap m-\text{Int}(V) \). Since \(A \subseteq U \), \(A = U \cap A \subseteq U \cap [m-\text{Int}(m-\text{Cl}^*(U)) \cap m-\text{Int}(V)] = [U \cap m-\text{Int}(m-\text{Cl}^*(U)))] \cap m-\text{Int}(V) = U \cap m-\text{Int}(V) \). We
have \(A \subseteq U \cap m\text{-Int}(V) \subseteq U \cap V = A \). Hence \(A = U \cap m\text{-Int}(V) \) and \(A \in m_x \).

Theorem 7.4.12

Suppose \(m\text{-Cl}^* \) is a Kuratowski closure operation. Let \(V \) be a subset of \((X, m_x, I)\) such that \(m\text{-Int}(V) \in m_x \). Let \((X, m_x)\) have property \(I \). Then the following properties are equivalent:

(i) \(X \) is \(m\)-\(I \)-submaximal.
(ii) Every pre-\(m\)-\(I \)-open set is an \(AB_{m,I} \)-set.
(iii) Every \(m^* \)-dense set is an \(AB_{m,I} \)-set.

Proof

(i) \(\Rightarrow \) (ii): Let \(A \subseteq X \) be a pre-\(m\)-\(I \)-open set. Since \(X \) is \(m\)-\(I \)-submaximal, by Theorem 7.4.2, \(A \) is \(m \)-open. It follows from definition 7.4.10 (iii) that \(A \) is an \(AB_{m,I} \)-set.

(ii) \(\Rightarrow \) (iii): Let \(A \subseteq X \) be a \(m^* \)-dense set. Since every \(m^* \)-dense set is pre-\(m\)-\(I \)-open, then by (ii), \(A \) is an \(AB_{m,I} \)-set.

(iii) \(\Rightarrow \) (i): Let \(A \subseteq X \) be a \(m^* \)-dense set. By (iii), \(A \) is an \(AB_{m,I} \)-set. Since every \(m^* \)-dense set is pre-\(m\)-\(I \)-open, then \(A \) is pre-\(m\)-\(I \)-open. Since \(A \) is pre-\(m\)-\(I \)-open and an \(AB_{m,I} \)-set, by Theorem 7.4.11, \(A \) is \(m \)-open. Hence, \(X \) is \(m\)-\(I \)-submaximal.

Theorem 7.4.13

For an ideal \(m \)-space \((X, m_x, I)\) satisfying property \(\mathcal{B} \), the following are equivalent.
(i) Every m*-dense in itself subset is pre-m-I-open.

(ii) Every m*-perfect subset is m-open.

Proof

(i) ⇒ (ii) Let A ⊆ X be m*-perfect. By hypothesis, A is pre-m-I-open and hence A ⊆ m-Int(m·Cl*(A)) = m-Int(A). Thus A is m-open.

(ii) ⇒ (i) Let A ⊆ X be m*-dense in itself. Then A ⊆ A_m^* and A_m^* = m-Cl*(A). On the other hand, A_m^* ⊆ (A_m^*)_m^* ⊆ A_m^* and hence A_m^* = (A_m^*)_m^*. Consequently we have (m-Cl*(A))_m = m-Cl*(A). Then m-Cl*(A) is m*-perfect. By hypothesis, m-Cl*(A) is m-open, hence A ⊆ m-Cl*(A) = m-Int(m·Cl*(A)). Thus A is pre-m-I-open.

Definition 7.4.14

A subset A of an ideal m-space (X, m, I) is called a

(i) B_m,I-set if A = U ∩ V, where U ∈ m and V is a t-m-I-set.

(ii) I-locally m*-closed [19] if A = U ∩ V where U ∈ m and V is m*-closed.

Theorem 7.4.15 [69]

Let (X, m, I) be an ideal m-space satisfying property \heartsuit and A ⊆ X is m*-dense in itself. Then the following are equivalent:

(i) A is I-locally m*-closed.

(ii) A = U ∩ A_m^* for some m-open set U.

(iii) A_m^* − A is m-closed.
Theorem 7.4.16

Let \((X, m_x, I)\) be an ideal m-space satisfying property \(\mathbb{B}\) and \(A \subseteq X\) is \(m^*\)-perfect. Then the following are equivalent:

(i) \((X, m_x, I)\) is \(m\)-I-submaximal,

(ii) \(m-\text{Cl}^*(A) - A = A^*_m - A\) is \(m\)-closed for every subset \(A\) of \(X\),

(iii) Every subset of \(X\) is \(I\)-locally \(m^*\)-closed,

(iv) Every subset of \(X\) is a \(B_{m,I}\) set,

(v) Every \(m^*\)-dense subset of \(X\) is a \(B_{m,I}\) set.

Proof

(i) \(\Rightarrow\) (ii): Let \(A \subseteq X\). Then \(\text{m-Cl}^*[X - (m-\text{Cl}^*(A) - A)] = \text{m-Cl}^*[A \cup (X - m-\text{Cl}^*(A))] = X\) and so \(X - [m-\text{Cl}^*(A) - A]\) is \(m^*\)-dense. By hypothesis, \(X - [m-\text{Cl}^*(A) - A]\) is \(m\)-open and so \(m-\text{Cl}^*(A) - A\) is \(m\)-closed.

(ii) \(\iff\) (iii): It is obvious from Theorem 7.4.15

(iii) \(\Rightarrow\) (iv): Let \(A\) be \(I\)-locally \(m^*\)-closed. Then \(A = U \cap V\), where \(U \in m_x\) and \(V\) is \(m^*\)-closed set. Since \(V\) is \(m^*\)-closed, \(V^*_m \subseteq V\). Now \(m-\text{Cl}^*(V) = V \cup V^*_m = V\) It implies that \(m-\text{Int}(m-\text{Cl}^*(V)) = m-\text{Int}(V)\) which shows that \(V\) is \(t\)-\(m\)-I-set. Hence \(A\) is \(B_{m,I}\) set.

(iv) \(\Rightarrow\) (v): clear.
(v) ⇒ (i): Let A be a m^*-dense subset of X. By (v), A is a B_{m^*}-set and so $A = G \cap F$ where $G \in m_x$ and m-$\text{Int}(F) = m$-$\text{Int}(m$-$\text{Cl}^*(F))$. Since $A \subseteq F$, m-$\text{Cl}^*(A) \subseteq m$-$\text{Cl}^*(F)$ and so $X = m$-$\text{Cl}^*(F)$. Therefore $X = m$-$\text{Int}(m$-$\text{Cl}^*(F)) = m$-$\text{Int}(F)$ which implies that $F = X$. Hence $A = G \cap F = G \cap X = G \in m_x$.

Theorem 7.4.17

Let (X, m_x, I) be an ideal m-space satisfying property \mathcal{B} and $A \subseteq X$ is m^*-perfect. Then the following are equivalent:

(i) X is m-I-submaximal,

(ii) Every subset of X is a B_{m^*}-set,

(iii) Every strongly β-m-I-open set is a B_{m^*}-set,

(iv) Every m^*-dense subset of X is a B_{m^*}-set.

Proof

(i) ⇒ (ii): It follows from Theorem 7.4.16.

(ii) ⇒ (iii): Obvious.

(iii) ⇒ (iv): It follows from the fact that every m^*-dense subset of X is a strongly β-m-I-open set.

(iv) ⇒ (i): It follows from Theorem 7.4.16.

Proposition 7.4.18

Every m-submaximal space is m-I-submaximal space.

Proof
Let $A \subseteq X$ be m^*-dense. Since $m_x \subseteq m^*_x$, A is m-dense. Since X is m-submaximal, then A is m-open in X. Then X is m-I-submaximal space.

Theorem 7.4.19

Let (X, m_x, I) be an ideal m-space satisfying property \mathcal{B} and $A \subseteq X$ is m^*-perfect. Then the following properties are equivalent:

(i) X is m-I-submaximal,

(ii) Every subset of X is I-locally m^*-closed,

(iii) Every subset of X is a union of an m^*-open subset and a m-closed subset of X,

(iv) Every m^*-dense subset of X is an intersection of a m^*-closed subset and an m-open subset of X.

Proof

(i) \iff (ii): It follows from Theorem 7.4.16

(ii) \iff (iii): Let $A \subseteq X$. By (ii), we have $X \setminus A = U \cap K$, where U is m-open and K is m^*-closed in X. This implies that $A = (X \setminus U) \cup (X \setminus K)$, where $X \setminus U$ is m-closed and $X \setminus K$ is m^*-open in X. The converse is similar.

(ii) \Rightarrow (iv): Obvious.

(iv) \Rightarrow (i): Let $A \subseteq X$ be a m^*-dense set. Then $A = U \cap B$, where U is m-open and B is m^*-closed. Since $A \subseteq B$ and so B is m^*-dense, then m-
\[\text{Int}(B) = m-\text{Int}(m-\text{Cl}^*(B)) = m-\text{Int}(X) = X. \text{ Hence } B = X \text{ and } A = U \text{ is } m\text{-open. Thus, } X \text{ is } m\text{-I-submaximal.} \]