CONTENTS

DECLARATION

CERTIFICATE

ACKNOWLEDGEMENTS

CHAPTER I: INTRODUCTION AND SCOPE

1.1 Introduction 2
1.2 General characteristics of the transition elements 2
1.2.1 Chemistry of cobalt(II) 4
1.2.2 Chemistry of nickel(II) 4
1.2.3 Chemistry of copper(II) 5
1.2.4 Chemistry of zinc(II) 5
1.3 Nitrogen and oxygen donor atoms in ligands 5
1.4 Solid state reactions 6
1.5 Thermal analysis methods 7
1.6 Basis of thermal analysis 8
1.7 Thermogravimetry 8
1.8 Derivative thermogravimetry 10
1.9 Differential thermal analysis 10
1.10 Differential scanning calorimetry 11
1.11 Simultaneous TG/DTA measurements 13
1.12 Thermal decomposition kinetics from thermal analysis data 13
1.13 Mechanism non-invoking method 15
1.13.1 Isothermal kinetics
1.13.2 Non-isothermal kinetics
1.13.3 Differential methods
1.13.4 Approximation methods
1.13.5 Integral methods
1.14 Mechanism invoking methods
1.14.1 Nuclei formation and growth
1.14.2 Diffusion controlled reactions
1.14.3 Phase boundary reactions
1.15 Hydrazines and their complexes
1.16 Thermal decomposition studies of transition metal hydrazine complexes- a concise review
1.17 Scope of the present investigation
Tables

CHAPTER II: REAGENTS AND METHODS

2.1 Metal salts
2.2 Ligands
2.3 Solvents
2.4 Other reagents
2.5 Preparation of the complexes
2.6 Analysis of the complexes
2.7 Metal contents
2.7.1 Determination of cobalt
2.7.2 Determination of nickel
2.7.3 Determination of copper
2.7.4 Determination of zinc 41
2.7.5 Sulphate contents 41
2.8 Physiochemical investigations 42
2.8.1 Elemental analysis 42
2.8.2 Molecular mass determination 42
2.8.3 Infrared spectra 43
2.8.4 Independent pyrolysis 43
2.9 Thermal analysis 43
2.9.1 Instrumental characteristics 44
2.9.2 Operational characteristics 45
2.9.3 Treatment of data 45
2.9.4 Determination of kinetic parameters 46
2.9.5 Determination of mechanism for the reaction 47
Tables 48

CHAPTER III: HYDRAZINE COMPLEXES OF TRANSITION METAL SULPHATES AND THIOCYANATES

3.1 Introduction 56
3.2 Experimental 56
3.3 Results and discussion 57
3.4 Thermal decomposition of the complexes 57
3.4.1 Cobalt (II) complexes 57
3.4.2 Nickel (II) complexes 60
3.4.3 Copper (II) complexes 62
3.4.4 Zinc (II) complexes 65
3.5 Kinetics and mechanism of thermal decomposition of the complexes 68

3.5.1 Cobalt (II) complexes 68
3.5.2 Nickel (II) complexes 70
3.5.3 Copper (II) complexes 71
3.5.4 Zinc (II) complexes 72

Figures & Tables 75

CHAPTER IV: PHENYLHYDRAZINE COMPLEXES OF TRANSITION METAL SULPHATES AND THIOCYNATES

4.1 Introduction 102
4.2 Experimental 102
4.3 Results and discussion 102
4.4 Thermal decomposition of the complexes 103
4.4.1 Cobalt (II) complexes 103
4.4.2 Nickel (II) complexes 105
4.4.3 Copper (II) complexes 108
4.4.4 Zinc (II) complexes 110
4.5 Kinetics and mechanism of thermal decomposition of the complexes 112
4.5.1 Cobalt (II) complexes 113
4.5.2 Nickel (II) complexes 114
4.5.3 Copper (II) complexes 116
4.5.4 Zinc (II) complexes 117

Figures & Tables 119
CHAPTER V: BENZOYLHYDRAZINE COMPLEXES OF TRANSITION METAL SULPHATES AND THIOCYANATES

5.1 Introduction 144
5.2 Experimental 144
5.3 Results and discussion 144
5.4 Thermal decomposition of the complexes 145
5.4.1 Cobalt (II) complexes 145
5.4.2 Nickel (II) complexes 148
5.4.3 Copper (II) complexes 150
5.4.4 Zinc (II) complexes 153
5.5 Kinetics and mechanism of thermal decomposition of the complexes 156
5.5.1 Cobalt (II) complexes 156
5.5.2 Nickel (II) complexes 158
5.5.3 Copper (II) complexes 159
5.5.4 Zinc (II) complexes 160
Figures & Tables 163

CHAPTER VI: ISONICOTINOYLHYDRAZINE COMPLEXES OF TRANSITION METAL SULPHATES AND THIOCYANATES

6.1 Introduction 190
6.2 Experimental 190
6.4 Thermal decomposition of the complexes
6.4.1 Cobalt (II) complexes
6.4.2 Nickel (II) complexes
6.4.3 Copper (II) complexes
6.4.4 Zinc (II) complexes
6.5 Kinetics and mechanism of thermal decomposition of the complexes
6.5.1 Cobalt (II) complexes
6.5.2 Nickel (II) complexes
6.5.3 Copper (II) complexes
6.5.4 Zinc (II) complexes
Figures & Tables

SUMMARY AND CONCLUSION
REFERENCES