Contents

Introduction Page 1

Review of literature Page 4
 2.1 Background
 2.2 The Life Cycle of mammalian malaria parasite
 2.3 Antimalarial Drugs and their toxicity
 2.4 Murine Malaria model
 2.5 Mechanism of Drug induced hepatotoxicity
 2.6. Mechanism of Drug induced Nephrotoxicity
 2.7 Oxidative stress and tissue injury
 2.7.1 Superoxide dismutase
 2.7.2 Catalase
 2.7.3 Glutathione peroxidase
 2.7.4 Thiol antioxidants — glutathione
 2.8. Advancements in toxicology research
 2.8.1 Gene expression analysis and toxicology
 2.9. An overview of toxicogenomics
 2.9.1 Microarray: A powerful tool for transcript analysis
 2.9.2 Toxicogenomics in drug development, risk assessment and class prediction

Materials and methods Page 30
 3.1. Animal procurement and acclimatization
 3.2. Dosing with Chloroquine
 3.3 Dosing with Amodiaquine and Sulfadoxine-Pyrimethamine
 3.4 Infection with Plasmodium vinckei
 3.5 Estimation of ROS generation by Flow Cytometry
 3.6 Serum biochemistry for the markers of hepatotoxicity and nephrotoxicity
 3.7 Histology
 3.8 Biochemical examination of Tissue homogenates
 3.8.1 Measurement of Lipid peroxidation level (LPO)
 3.8.2 Catalase (CAT) activity measurement
 3.8.3 Superoxide dismutase activity (SOD) measurement
 3.8.4 Glutathione reductase (GR) activity measurement
 3.8.5 Glutathione peroxidase activity (GPX) measurement
 3.8.6 Total Glutathione (GSH) estimation
 3.8.7 Protein estimation
 3.9 Microarray analysis of mouse liver and kidney
 3.9.1 RNA isolation and QC
 3.9.2 22.4k mouse cDNA arrays for whole genome expression
 3.9.3 8X15K oligonucleotide mouse whole genome expression array
 3.9.4 Microarray data analysis
 3.9.5 Pathway analysis, functional characterization and in-silico validation
 3.10 Real Time PCR analysis
Results

Section (A): Dose dependent Chloroquine (CQ) toxicity and differential gene expression

4.1 Generation of reactive oxygen species (ROS) following Chloroquine administration
4.2 Effects of Chloroquine treatment on biomarkers of Hepatotoxicity and oxidative stress
4.3 Histological evaluation of hepatic tissue
4.4 Effects of Chloroquine treatment on enzymatic activity of hepatic antioxidant enzymes
4.5 Effects of Chloroquine treatment on Gene Expression of major antioxidant enzymes
4.6 Effects of Chloroquine treatment on biomarkers of Nephrotoxicity and oxidative stress
4.7 Histological evaluation of kidney treated with CQ
4.8 Effects of Chloroquine treatment on enzymatic activity of antioxidant enzymes in kidney tissue homogenates
4.9 Effects of Chloroquine treatment on Gene Expression of major antioxidant enzymes in kidney tissue homogenates

Section B: Toxicity and Differential gene expression analysis of Amodiaquine and Sulfadoxine-Pyrimethamine

4.10 Effect of Amodiaquine (AQ) and Sulfadoxine-Pyrimethamine (SP) treatment on biomarkers of Hepatotoxicity and Oxidative stress
4.11 Effect of Amodiaquine (AQ) and Sulfadoxine-Pyrimethamine (SP) treatment on Liver Histology
4.12 Effect of Amodiaquine (AQ) and Sulfadoxine-Pyrimethamine (SP) treatment on antioxidant enzymes in liver tissue fraction
4.13 Effect of Amodiaquine (AQ) and Sulfadoxine-Pyrimethamine (SP) treatment on mRNA expression of antioxidant enzymes.
4.14 Effects of Amodiaquine and Sulfadoxine-Pyrimethamine treatment on biomarkers of Nephrotoxicity and oxidative stress
4.15 Histological evaluation of kidney treated with Amodiaquine and Sulfadoxine-Pyrimethamine
4.16 Effects of Amodiaquine and Sulfadoxine-Pyrimethamine treatment on enzymatic activity of antioxidant enzymes in kidney tissue homogenates
4.17 Effects of Chloroquine treatment on Gene Expression of major antioxidant enzymes in kidney tissue homogenates
4.18 cDNA Microarray analysis of differential gene expression in murine Liver and Kidney exposed to Antimalarials: Amodiaquine (AQ) and Sulfadoxine-Pyrimethamine (SP)

4.18.1 Gene expression Analysis
4.18.2 Cluster analysis
4.18.3 Pathway analysis
4.18.4 Real Time PCR validation of microarray findings.

Section C: Toxicity and Differential Gene expression analysis in swiss mice infected with Plasmodium vinckei

4.19 Effect of Plasmodium vinckei infection on biomarkers of Hepatotoxicity
4.20 Effect of Plasmodium vinckei infection on Liver Histology
4.21 Effect of Plasmodium vinckei infection on biomarkers of Nephrotoxicity
4.22 Effect of Plasmodium vinckei infection on kidney histology
4.23 Oligonucleotide Microarray analysis of differential gene expression in murine Liver and Kidney infected with Plasmodium vinckei

4.23.1 Gene expression Analysis
4.23.2 Cluster analysis
4.23.3 Pathway analysis
4.23.4 Real Time PCR validation of microarray findings.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussions</td>
<td>131</td>
</tr>
<tr>
<td>Summary</td>
<td>146</td>
</tr>
<tr>
<td>References</td>
<td>149</td>
</tr>
<tr>
<td>Appendix I</td>
<td>i</td>
</tr>
<tr>
<td>(List of Abbreviations and symbol used in text)</td>
<td></td>
</tr>
<tr>
<td>Appendix II</td>
<td>iii</td>
</tr>
<tr>
<td>(List of Publications)</td>
<td></td>
</tr>
</tbody>
</table>
