Contents

Abstract iv
List of Tables xii
List of Figures xiv
Nomenclature xviii

Chapter I: Introduction and Literature Review 1-27

1.1. Automobile Cooling System 1
1.1.1. Essential qualities of Coolants 2
1.1.2. Need for Nano Coolants for Automobiles 4
1.2. Nano Technology 4
1.2.1. Nanofluids and Their Applications 5
1.2.2. Advantages of Nanofluids 5
1.3. Feasibility of Dispersion of Engine Coolants With Nano Particles 6
1.3.1. Suitability of Nano Particles in Radiators 7
1.4. Preparation of Nanofluids 8
1.5. Stability of Nanofluids 8
1.5.1. Stability Evaluation Using Zeta Potential Analysis 9
1.6. Literature Review 10
1.6.1. Thermal Conductivity enhancement 12
1.6.2. Convective Heat Transfer Enhancement 15
1.6.3. Surface Modification methods employed by researchers 22
1.7. Scope of the Work 25
1.7.1. Objectives of the work 27

Chapter II: Preparation of Nanofluids with CNTs 28-52

2.1. Introduction 28
2.2. Purification of Carbon Nanotubes 28
2.3. Characterizations of Nano Materials 29
2.4. Ball Milling of CNTs 31
2.5. Characterization of Ball Milled CNTs on HRSEM and TEM 32
2.6. Characterization of CNTs on TEM after Ball Milling 34
2.7. Functionalization of CNTs 36
2.8. Surface Modification of Carbon Nanotubes To Prevent Settling 37
2.9. Surfactant Assisted Modification 38
2.9.1. Surfactant Assisted Surface Modification of MWCNTs 39
2.10. Surface Modification by Chemical Oxidation of Carbon Nanotubes 40
2.10.1. Surface Modification by Oxidation 41
2.10.2. Analysis of Modified CNTs 41
2.11. Selection of Base Coolant 44
2.11.1. Preparation of Base Fluids 45
2.11.2. Preparation Coolants with Surface Modified Nanotubes 45
2.12. Stability of Nanofluids 48
2.12.1. Analysis of Fluid Stability Using Zeta Potential Analyzer 49
2.13. Conclusions 52

Chapter III: Corrosion Tests of Nanofluids 53-66
3.1. Introduction 53
3.2. Glassware Corrosion Test Method As Per ASTM D 1384 54
3.2.1. Testing of Coolant Solutions 54
3.2.2. Additional Treatments of Metal Specimen 56
3.2.3. Reporting Weight Loss 56
3.3. Test to Determine Foaming Tendencies of Engine Coolants in Glassware as Per ASTM D1881 58
3.3.1. Experimental Setup and Test Procedure 58
3.4. Corrosion of Cast Aluminum Alloys as Per ASTM D 4340 60
3.4.1. Experimental Setup and Test Procedure 60
3.5. Cavitation Corrosion Test as Per ASTM G 32 64
3.5.1. Experimental Setup and Test Procedure 64
3.6. Conclusions 66

Chapter IV: Measurement of Thermo physical Properties 67-81
4.1. Introduction 67
4.2. Determination of Thermal Conductivity 67
4.2.1. Measurement of Thermal Conductivity Using Thermal analyzer KD2 Pro 67
4.2.2. Development of Correlation to Predict Thermal conductivity 69
4.3. Determination of Specific Heat 71
4.4. Determination of Boiling Point 72
4.5. Measurement of Freezing Point 73
4.6. Measurement of Density 75
4.7. Determination of Viscosity 76
4.7.1. Measurement of Viscosity on Viscometer 76
4.7.2. Development of Correlation to Predict Viscosity 79
4.8. Conclusions 80

Chapter V: Experimental and analytical studies of Heat Transfer Enhancement with nanofluids 82-108
5.1. Test Rig Experimental studies 82
5.1.1. Description of Wind Tunnel 83
5.1.2. Description of Air blower 84
List of Tables

Table 1.1:	Suitability of Nano Particles in Radiators	7
Table 2.1:	Mass Fractions of MWCNTs Mixed with Base Coolant	47
Table 2.2:	Stability Variation with Change In Zeta Potential.	49
Table 2.3:	Zeta Potential of Normal Water and Carboxylated Water with CNTs	52
Table 3.1:	Corrosion Results of Base Coolants.	57
Table 3.2:	Corrosion Results of Coolant Dispersed With CNTs	58
Table 3.3:	Foam Test Results as Per ASTM D1881 of Nano Fluids	60
Table 3.4:	Results of the ASTM D 4340 Test with Nano Fluids	63
Table 4.1:	The Specific Heat Values of Carboxylated water with Various Concentrations of CNTs	72
Table 4.2:	The Boiling Point Values Carboxylated Water with Various Concentrations of CNTs	73
Table 4.3:	The Freezing Point Values of Carboxylated water with Various Concentrations of CNTs	75
Table 4.4:	Density Values of Carboxylated water with Various Concentrations of CNTs	76
Table 5.1:	Percentage Enhancements in \(U_i \) for Various Concentrations of MWCNTs when Dispersed In Carboxylated Water with Air Velocity 5m/s.	90
Table 5.2:	Percentage Enhancements in \(U_i \) for Various Concentrations of MWCNTs when Dispersed In Carboxylated Water with Air Velocity 10m/s	92
Table 5.3:	Percentage Enhancements in \(U_i \) for Various Concentrations of MWCNTs when Dispersed In Carboxylated Water When Air Velocity Is 15 m/s	94
Table 5.4:	Percentage Reduction in \(A_i \) for Various Combinations of MWCNTs When Dispersed in Carboxylated Water with	96
Air Velocity 5m/s.

Table 5.5: Percentage Reduction in A_i for Various Combinations of MWCNTs When Dispersed in Carboxylated Water with Air Velocity 10m/s.

Table 5.6: Percentage Reduction in A_i for Various Combinations of MWCNTs When Dispersed in Carboxylated Water with Air Velocity 15m/s.

Table 5.7: Percentage Reduction in m_h for Various Combinations of MWCNTs When Dispersed in Carboxylated Water.

Table 5.12: Uncertainties of Different Variables
List of Figures

Fig. 1.1: Automobile Cooling System 2
Fig. 2.1: HRSEM Image of Pristine Carbon Nano tube 29
Fig. 2.2: EDX Spectrum of Pristine Carbon Nanotubes 30
Fig. 2.3: HRSEM Image of Purified Carbon Nano Tubes 30
Fig. 2.4: EDX Spectrum of Purified Carbon Nanotubes 31
Fig. 2.5: Two Bowls Planetary Ball Milling Machine with WC Lined Bowls and WC Balls 32
Fig. 2.6: HRSEM Image of CNTs Ball Milled For 20 Hours 33
Fig. 2.7: HRSEM Image of CNTs Ball Milled For 24 Hours 33
Fig. 2.8: HRSEM Image of CNTs Ball Milled For 30hours 34
Fig. 2.9: TEM Images of Pristine CNTs 35
Fig. 2.10: TEM Image of 24 Hr Ball milled and Purified CNTs 35
Fig. 2.11: TEM Image of 24 Hr Ball Milled and Oxidized CNTs 36
Fig. 2.12: Micelle Formations 38
Fig. 2.13: Coolant Dispersed With CNTs Using Surfactants. 40
Fig. 2.14: Functional Groups Formed When Refluxed In Acids 40
Fig. 2.15: FTIR spectrum of pristine CNTs 42
Fig. 2.16: FTIR Spectrum of Modified CNTs (3M H₂SO₄ + 3M HNO₃) 42
Fig. 2.17: FTIR Spectrum of Modified CNTs (4M H₂SO₄ + 4 M HNO₃) 43
Fig. 2.18: FTIR Spectrum of Modified CNTs (5M H₂SO₄ + 5 M HNO₃) 43
Fig. 2.19: Ultra Sonicator 46
Fig. 2.20: Acoustic Cavitation 46
Fig. 2.21: Acoustic cavitation Braking Large and Small Particles 47
Fig. 2.22: Unstable Suspension of CNTs in Carboxylated Water 48
Fig. 2.23: Stable suspension of CNTs in Carboxylated Water 48
Fig. 2.24: Measurement Results of Zeta Potential for Water+0.025% CNTs 50
Fig. 2.25: Measurement Results of Zeta Potential for Water+0.1% CNTs 50
Fig. 2.26: Measurement Results of Zeta Potential for Carboxylated Water + 0.025% CNTs 51
Fig. 2.27: Measurement Results of Zeta Potential for Carboxylated Water + 0.1% CNTs 51
Fig. 3.1: Metal Coupon Arrangements 55
Fig. 3.2: Glassware Test Equipment 55
Fig. 3.3: Corrosion Test Setup 55
Fig. 3.3: Apparatus for Glassware Foam Test 59
Fig. 3.4: Schematic of ASTM D 4340 Apparatus 61
Fig. 3.5: Fabricated ASTM D 4340 Apparatus 62
Fig. 3.6(a): Al coupon immediately after removal 62
Fig. 3.6(b): Al coupon after cleaning with water. 62
Fig. 3.6(c): Al coupon after treatment and drying 63
Fig. 3.7(a): New Engine Liner 64
Fig. 3.7(b): Damaged Engine Liner Due to Cavitation 64
Fig. 3.8: Test set up and metal samples before and after cavitation test 65
Fig. 3.9: Test Sample Before And After 10 Hours of Cavitation Test 65
Fig. 3.10: Rate of Cumulative Mass Loss vs. Exposure Time For Various Nanofluids 66
Fig. 4.1: Image of KD2 PRO Thermal Property Analyzer 68
Fig. 4.2: Variation of thermal conductivity with temperature for different concentrations of MWCNTs 69
Fig. 4.3: Validation of the correlation (4.5) with the experimental data of the thermal conductivity 71
Fig.4.4: Boiling Point Measurement Equipment 73
Fig.4.5: Freezing Point Measurement Equipment 74
Fig.4.6: Showing Cooling and Freezing Lines of Fluids 74
Fig. 4.7: Anton Paar Density meter DMA 4500 ME 75
Fig. 4.8: Brookfield Ultra Rheometer 77
Fig. 4.9: Variation of Shear Stress with Shear Rate at 50°C for Carboxylated water and Various Concentrations of CNTs 77
Fig. 4.10: Variation of Shear Stress with Shear Rate at 90°C for Carboxylated water and Various Concentrations of CNTs 78
Fig. 4.11: Variation of viscosity with temperature 79
Fig. 4.12: Validation of the correlation (4.10) with the experimental data of the Viscosity 80
Fig. 5.1: The Schematic Diagram of Wind Tunnel Test Rig. 82
Fig. 5.2: Experimental Setup Of The Test Rig 83
Fig. 5.3: Wind Tunnel Fitted with Air Blower. 84
Fig. 5.4: Air Blower Fitted To One End of The Wind Tunnel Test Rig. 84
Fig. 5.5: Anemometer Fitted in the Wind Tunnel to Measure the Velocity of Airflow 85
Fig. 5.6: Car Radiator Fitted to the Wind Tunnel Test Rig. 86
Fig. 5.7: Radiator Diagram Indicating the Positions of the Thermocouples 87
Fig. 5.8: Schematic of Control Panel 88
Fig. 5.9: Control Panel Fabricated As Per the Schematic 88
Fig. 5.10: Variation of Overall Heat Transfer Coefficient (U_i) with Flow Reynolds Number of Coolant for Different Concentrations of CNTS at An Air Velocity of 5 m/s 91
Fig. 5.11: Variation of overall heat transfer coefficient (Ui) with flow Reynolds number of coolant for different concentrations of CNTS at an air velocity of 10 m/s

Fig. 5.12: Variation of Overall Heat Transfer Coefficient (Ui) with Flow Reynolds Number of Coolant For Different Concentrations of CNTS at An Air Velocity of 15 m/s

Fig. 5.14: Validation of the correlation (5.10) for base fluid.

Fig. 5.15: Validation of the correlation (5.11) for base fluid.

Fig. 5.16: Validation of the correlation (5.12) for base fluid + 0.025% CNTs

Fig. 5.17: Validation of the correlation (5.13) for base fluid + 0.025% CNTs

Fig. 5.18: Validation of the correlation (5.14) for base fluid + 0.05% CNTs.

Fig. 5.19: Validation of the correlation (5.15) for base fluid + 0.05% CNTs.

Fig. 5.20: Validation of the correlation (5.16) for base fluid + 0.1% CNTs.

Fig. 5.21: Validation of the correlation (5.17) for base fluid + 0.1% CNTs.

Fig. 5.22: Validation of the correlation (5.18) all fluids.

93 95 100 101 102 103 104 104 105
NOMENCLATURE

μ = Dynamic viscosity (cP).

μ_{nf} = Viscosity of nanofluids (cP).

μ_{bf} = Viscosity of basefluid (cP).

μ_r = Relative dynamic viscosity.

φ = Mass concentration of nano particles.

φ_v = Volumetric concentration of particles.

R = Corrosion rate, mg/cm^2/week.

W_b = Weight of test specimen before test (mg).

W_a = Weight of test specimen after test (mg).

B = Weight loss of blank (mg).

A = Heat-flux surface area inside O-ring (cm^2) = 5.5 cm diameter circular area.

k = Thermal conductivity (W/m K).

k_{nf} = Thermal conductivity of nanofluids (W/mK).

k_{bf} = Thermal conductivity of base fluid (W/mK).

k_{eff} = Effective thermal conductivity of the mixture (W/mK).

k_p = Thermal conductivity of the particles (W/mK)

T_{nf} = Temperature of nanofluids (°C).

T_{max} = Maximum Temperature of nanofluids in the experimental data (°C).

d_p = Diameter of the nano particles (nm).

d_p^* = The upper limit of the diameter of the nano particles (nm).

α_p = Thermal diffusivity of nano particle (m^2/s).

α_w = Thermal diffusivity of water (m^2/s).

T = Temperature (°C).

Q = Rate of heat transfer (W).

(Δt)_h = Temperature difference (between inlet and outlet) for hot fluid (°C).

(Δt)_c = Temperature difference (between inlet and outlet) for cold fluid (°C).

(Δt)_i = Inside temperature of the radiator (°C).

(Δt)_o = Outside temperature of the radiator (°C).

NTU = Number of Transfer Units.

U_i = Overall heat transfer coefficient inside the tube of radiator (W/m^2 K).
\(A_t \) = Area inside the tube of radiator (m\(^2\)).
\(A_o \) = Area outside the tube of radiator (m\(^2\)).
\(C_{\text{min}} \) = Smaller value of \(m_h c_h \) and \(m_c c_c \) (W/K).
\(m_h \) = Mass flow rate of hot fluid (kg/s).
\(c_h \) = Specific heat of hot fluid (J/kg K).
\(m_c \) = Mass flow rate of cold fluid (kg/s).
\(c_c \) = Specific heat of cold fluid (J/kg K).
\(h_i \) = Heat transfer coefficient on inner side of tube(W/m\(^2\) K).
\(h_o \) = Heat transfer coefficient on outer side of the tube(W/m\(^2\) K).
\(\Delta T_{\text{lm}} \) = Logarithmic mean temperature.
\(T_{H1} \) = Entry temperature of hot fluid (K).
\(T_{H2} \) = Leaving temperature of hot fluid (K).
\(T_{C1} \) = Entry temperature of cold fluid (K).
\(T_{C2} \) = Leaving temperature of cold fluid (K).
\(T_1 \) = Air inlet temperature (°C).
\(T_2 \) = Air outlet temperature (°C).
\(T_3 \) = Coolant inlet temperature (°C).
\(T_4 \) = Coolant outlet temperature (°C).

Temperatures \(T_5 \) to \(T_{16} \) represents the temperature of various thermocouples placed at various locations on the radiator.

\(P_{\text{pump}} \) = Pumping power of the pump (W).
\(\Delta P \) = Pressure difference (Pa).
\(\rho \) = Density of the fluid (kg/m\(^3\)).
\(m \) = Mass flow rate of the fluid (kg/s).
\(f \) = Friction factor.
\(u_m \) = Mean velocity of the fluid (m/s).
\(L \) = Length of the radiator tube (m).
\(D \) = Inside diameter of the radiator tube (m).
\(Re_D \) = Reynolds number with diameter of the tube of the radiator.
\(Re \) = Reynolds number.
\(Nu \) = Nusselt number.
\(Pr \) = Prandtl number.
\(St \) = Stanton number.
\[Pr_w \] = Prandtl number at the wall temperature of the radiator.
\[\frac{u_{Re}}{Re} \] = Uncertainty in the calculation of Reynolds number.
\[\frac{u_p}{p} \] = Uncertainty in the measurement of density of the fluid.
\[\frac{u_u}{u} \] = Uncertainty in the measurement of velocity of the fluid.
\[\frac{u_\mu}{\mu} \] = Uncertainty in the measurement of viscosity of the fluid.
\[\frac{u_q}{q} \] = Uncertainty in the calculation of heat flux.
\[\frac{u_V}{V} \] = Uncertainty in the measurement of voltage.
\[\frac{u_f}{f} \] = Uncertainty in the measurement of current.
\[\frac{u_h}{h} \] = Uncertainty in the calculation of heat transfer coefficient.
\[\frac{u(T_w-T_b)}{(T_w-T_b)} \] = Uncertainty in Temperature measurement.
\[\frac{u_{Nu}}{Nu} \] = Uncertainty in the calculation of Nusselt number.
\[\frac{u_k}{k} \] = Uncertainty in the measurement of thermal conductivity.