ABSTRACT
ABSTRACT

Cloud Computing is one of the well developing and current emerging fields in Computer Science and Information Technology. It is the recent technology that uses to solve critical problem with the help of internet based application. It is a combination of both parallel and distributed system that communicates the message with the help of web. The type of resource sharing is based on dynamic allocation policy. Cloud computing technology is used to prevent the unused system space situation to enhance the resource usage effectively. In cloud computing, every kind of application executes on a VM, the resources are distributed virtually. The term Cloud typically consists of many hundreds and thousands of virtual and physical servers, which are efficiently running this virtual infrastructure becomes a major concern.

Utilizing the available resource is one of the largest parts and difficult tasks in cloud computing. In the traditional Combinational Backfill Algorithm (CBA) that performs the job scheduling with the help of First Come First Serve (FCFS) and Shortest Job First (SJF). The outcome of these algorithm returns fragmentation at the time of job scheduling. The research work is based on efficient Multi Queue job Scheduling (MQS) algorithm using CBA are enhanced with the help of Round Robin fashion. To make the most efficient use of the resources, the proposed scheduling algorithm helps to attain the resource in efficient manner and optimize for cloud scheduling problems. It obtains performance enhancements for an application capable of offering various cloud based services.

Scheduling is the complex challenge in cloud computing. The client user has to pay for services based on number of minutes or hours or days used by them. The anticipated method depicts the concept of grouping of jobs based on their burst time. The problem occurs during the time of scheduling in the existing strategy like FCFS, SJF, Extensible Argonne Scheduling sYstem (EASY), CBA and Improved Backfill Algorithm using balance spiral method generates more fragmentation. MQS overcomes this difficulty and reduces the starvation with in scheduling.
It also concentrate on some traditional job scheduling algorithm and problems related to them in cloud computing. The proposed work signifies selecting the job dynamically in regulate to attain the optimum cloud scheduling.

The main objective of the proposed research work is to use the free unoccupied space. The main motto of job scheduling algorithm is to produce a proficient and effectual allocation of tasks. In traditional job scheduling algorithm it does not distribute the jobs properly and it takes maximum makespan for execution.

The research work Optimized Resource Filling (ORF) properly uses the computer node and amplifies the free available space and reduces fragmentation. The main aim of ORF algorithm is to produce high usage of available computer nodes, reducing the imbalance of the system and to get better throughput of the system.

If the computer node is in idle state, the available resources like manpower, amount invested on hardware and software and networking are wasted. To prevent this kind of situation, it is done with the help of effectiveness job scheduling policy. Tri Queue Scheduling (TQS) strategy is clustering the jobs based on the processor and time for allocates the resources. The proposed system helps to conquer the problem posed by the existing algorithm. The research work is based on clustering based TQS technique to enhance with the help of combinational backfill algorithm. The basic objective of this TQS is to give better use of available resources and find the performance improvements that capable of offering various cloud based application services. It grants equal opportunity given to all the jobs by using dynamic quantum time in Round Robin Fashion.

In Reservation and On-demand Priority (ROP) job scheduling algorithm implemented is to reduce the fragmentation at the time of scheduling. The research work ROP queuing is based on the log history of already used jobs which are clustered into two types namely high priority and low priority.
Quality job scheduling is determined by best possible use of resources and meet the user needs and full fill through his service. The important task of Improved Priority based Multi Queue Job Scheduling (IPMQJS) is to collect the requirements of uses and monitoring the changes. IPMQJS scheduling policy they execute the jobs which have high burst time goes to high priority queue first, and then medium burst time goes to medium priority queue and remaining jobs with low burst time executed in the low priority jobs.