BIBLIOGRAPHY

 Field Crops of India, Supt. Govt. Press, Bangalore.

 Phosphorus solubilizing ability of microorganisms isolated from different agro-climatic zones of Maharashtra State. Ph.D. Thesis, Univ. of Poona, Pune, India.

Effect of inoculation with native phosphate solubilizing microorganisms on the available phosphorus content in the rhizosphere and the uptake of phosphorus by rice

Effect of inoculation of phosphate solubilizing and phytohormone producing Bacillus firmus on the growth and yield of soybean (Glycine max) grown in acid soil of Nagaland (India). Zentralbl. Mikrobiol. 143 : 139-147.

Handbook of Agriculture, Tata S.N.(Ed), ICAR, New-Delhi.

In : The chemistry of Phosphorus. Harper R. (Ed.),
London.

Correlation between rhizosphere microbial activity and
phosphate uptake of the plant. Zentralbl. Mikrobiol. 139
: 519-526.

Influence of phosphate dissolving bacilli on yield and
phosphate uptake by wheat crops. Indian J. Exptl. Biol. 10
: 393-394.

Organic acids in soil during degradation of organic

Solubilization of phosphatic compounds by native
microflora of rock phosphates. Indian J. Exptl. Biol. 11 :
427-429.

Save superphosphate by using phospho- bacteria. Kheti,
32 : 23-25.

Review of Soil Research in India. Part I. 12th Int. Cong.
Soil Sci. New-Delhi, India, pp 278-305.

Phosphate solubilizing micro-organisms as biofertilizer. Omega Scientific Publishers, New-Delhi, India.

The influence of microorganisms on the phosphorus uptake by the plant. Plant & Soil 1: 51-81.

A study of the substrate specificity and other properties of the alkaline phosphatase of Escherichia coli. J. Biol.

57. Indian Agriculture in Brief, 23rd Ed. (1989).
Directorate of economics and statistics, Dept. of Agriculture and Cooperation, Ministry of Agriculture, Govt. of India.

Handbook of phosphate fertilization. Imprimerie J. Duculot-Gembloux (Belgium).
60. Joshi K.V. (1967).

A Brief review of work done on phosphate manuring on sugarcane in Deccan canal tract of Maharashtra. Proc. Deccan Sugar Technologists' Association (D.S.T.A.) 22nd convention, Pune, pp.6-30.

A textbook of plant physiology. Atmaram and sons., New Delhi, India.

Occurrence of phosphatic solubilizing bacteria in the

Effect of nitrogen fixing and phosphate solubilizing microorganisms as single and composite inoculant on Cotton. Plant & Soil. 57 : 223-225.

Rice (Oryza sativa) response to inoculation with nitrogen fixing and phosphorus solubilizing microorganisms. Plant & Soil. 79 : 227-234.

Some aspects of phosphate manuring to sugarcane in Deccan canal soils Proc. 9th Congr., International Society of Sugarcane Technologists (ISSCT), New Delhi. pp. 503-513.

Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5 : 109-111

Solubilization of tricalcium phosphate by soil fungi.

Bacterial fertilizers and their importance for Agricultural plants. Mikrobiologiya 33 : 352-358.

In: Statistical Methods for Agricultural Workers
I.C.A.R., New Delhi, India.

Release of phosphate from tricalcium phosphate by

Estimation of phosphates in plant sample. In: Guide to
Res. and Dev. in Sugarcane, Sug. Dev. Tech. Services,
Sorayur (T.N.), pp. 204-206.

Phosphorus in Soils, Crops and Fertilizers. Bull. Indian

Mobilization of phosphorus in soil in connection with
vital activity of some microbial species. Mikrobiologiya
17: 362-370.

Phosphorus and its compounds Vol II, Technology,
Biological functions and Applications. Academic
Press, New York.

Preliminary studies in phosphate fixation by major soil
167

Dissolution of rock phosphate by rhizosphere organisms isolated from Bangladesh soil. Bangladesh J. Agric. 11: 27-34.

Solubilization of tricalcium phosphate by soil fungi. J.

104. Stalstrom V.A. (1903).

The looming spectre of heavy metals. Farm Chemicals International (FCI)Forum, p78.

Use of p-nitrophenyl phosphate for assay of soil

 Status of phosphatases in the root-soil interface of leguminous and non-leguminous crop. Z. Pflanzen.
 Bodenkld.141 :347-351.

 Phosphatase production by microorganisms isolated from diverse types of soils. Zbl. Bakt. II. Abt. 134 :
 119-124.

 In : Soil fertility and fertilizers (2nd Ed.),Macmillan, New-York, U.S.A.,

120. Ustimenko G.V. and Bakumovsky (1983).

 Biocoenotic association between nitrogen fixing and phosphate solubilizing microorganisms. Current Sci., 58 :
 1099-1100.

In: A comprehensive paper, D.S.T.A., Pune.