TABLE OF CONTENTS

Acknowledgements i
List of contents iii
List of figures ix
List of Tables xi
Abbreviations xiii
Abstract xvi

CHAPTER 1
INTRODUCTION

1.1 Water pollution 1
1.2 Sources of ammonia 1
1.3 Environmental effects of ammonia 3
 1.3.1 Eutrophication 3
 1.3.2 Environmental issues due to Eutrophication 4
 1.3.2.1 International Scenario 4
 1.3.2.2 National Scenario 5
1.3.3 Dissolved oxygen depletion in water bodies 6
1.3.4 Nitrate accumulation 7
1.3.5 Acidification of soils 8
1.4 National and international standards 9
 1.4.1 Industrial effluent discharge standards 9
 1.4.2 Standards for receiving water bodies 10
1.5 Ammonia removal techniques 11
1.6 Need for bioremediation of ammonia 12
1.7 Research objectives 13
1.8 Thesis organization 14

CHAPTER 2
REVIEW OF LITERATURE

2.1 Methods for ammonical nitrogen (NH$_4^+$-N) removal 17
 2.1.1 Physical methods 17
2.1.2 Chemical methods
2.1.3 Physico-chemical methods
2.1.3.1 Drawbacks of physical and chemical methods
2.1.4 Biological Processes
2.1.4.1 Algal studies
2.1.4.2 Use of Free Autotrophic organisms
2.1.4.3 Use of Free Heterotrophic organisms
2.1.4.4 Use of immobilised organisms

CHAPTER 3
THEORETICAL ASPECTS
3.1 Industrial production of ammonia
3.2 Uses of Ammonia
3.3 Physical and chemical properties
3.4 Solubility of ammonia
3.5 Fate of ammonia in water environment
 3.5.1 Nitrogen fixation and assimilation
 3.5.2 Ammonification
 3.5.3 Nitrification
 3.5.4 Denitrification

CHAPTER 4
SELECTION OF BIOLOGICAL METHOD FOR THE REMOVAL OF AMMONIA
4.1 Algal processes
4.2 Fungal processes
4.3 Bacterial processes
 4.3.1 Autotrophic bacteria
 4.3.1.1 Anammox bacteria
 4.3.2 Heterotrophic bacteria
4.4 Description of Selected Biological method for the removal of ammonia
CHAPTER 5
ISOLATION AND CHARACTERIZATION OF HETEROTROPHIC BACTERIA
FOR AMMONIA REMOVAL

5.1 Methodology

5.1.1 Isolation

5.1.1.1 Sample collection

5.1.1.2 Enrichment in liquid media

5.1.1.3 Isolation using solid media

5.1.1.4 Test for tolerance of ammonia

5.1.1.5 Culture preservation

5.1.2 Characterization of the isolate

5.1.2.1 Morphological identification

i. Colony morphology

ii. Gram staining of the isolate

iii. Motility test by agar dip method

5.1.2.2 Biochemical identification

a. Enteric tests

i. Indole test

ii. Methyl red test

iii. Voges proskauer test

iv. Citrate test

v. Nitrate reduction test

vi. Urease test

vii. Catalase test

b. Tests for Extracellular enzyme production

i. Starch hydrolysis

ii. Gelatine liquefaction

iii. Ortho-Nitrophenyl-β-Galactoside test

c. Test for utilisation of amino acid

i. Arginine test

d. Sugar fermentation tests

i. Sucrose fermentation test

ii. Mannitol fermentation test

iii. Glucose fermentation test
iv. Arabinose fermentation test 73
v. Trihalose fermentation test 73
5.1.2.3 Genetic characterization 73
i. 16s rRNA sequencing 73
ii. Phylogenetic analysis 74

RESULTS AND DISCUSSION
5.2 Characterization of isolates 75
5.2.1 Morphological identification 75
5.2.2 Biochemical identification 77
5.2.3 Genetic identification 85
i. Molecular sequencing (16s rRNA) 85
ii. 16srRNA sequence of isolated *bacillus cereus* SB1 86

CHAPTER 6
OPTIMIZATION OF PARAMETERS FOR AMMONIA REMOVAL
6.1 Methodology 90
6.1.1 Growth of the isolate under autotrophic and heterotrophic conditions 91
6.1.2 Effect of carbon source 91
6.1.2.1 Use of acetate as carbon source 92
6.1.2.2 Use of glucose as carbon source 92
6.1.2.3 Effect of carbon to nitrogen ratio 93
6.1.3 Effect of temperature 94
6.1.4 Effect of pH 95
6.1.5 Effect of dissolved oxygen 95
6.1.6 Effect of initial ammonia concentration 96
6.1.7 Analytical procedures 97
6.1.7.1 Estimation of ammonia concentrations by Nesseler’s method 97
6.1.7.2 Estimation of nitrite concentration by Griess-Ilosvay method 99
6.1.7.3 Estimation of nitrate concentration by Phenol disulphonic method (PDA) 100
6.1.7.4 Estimation of Total nitrogen using Nitrogen analyzer 101
6.1.7.5 pH measurement 103
6.1.7.6 dissolved oxygen measurements 103
6.2 Results and Discussion-Optimisation of parameters 104
6.2.1 Growth of the isolate under autotrophic and heterotrophic condition 104
6.2.1.1 Growth in absence of carbon source (autotrophic condition) 104
6.2.1.2 Growth of the isolate in presence of organic carbon (heterotrophic conditions) 107

6.2.2 Effect of carbon source 108
6.2.2.1 Use of Acetate as external carbon source 108
6.2.2.2 Use of Glucose as external carbon source 109
6.2.2.3 Effect of C/N ratio on growth of the isolate 110
6.2.3 Effect of temperature 113
6.2.4 Effect of pH 117
6.2.5 Effect of dissolved oxygen 120
6.2.6 Effect of initial ammonia concentration 122

CHAPTER 7
BIODEGRADATION OF AMMONIA USING ISOLATED HETEROTROPHIC BACTERIAL CULTURE
7.1 Methodology 126
7.1.1 Batch studies for ammonia degradation 126
7.2 Results and discussion 128
7.2.1 Batch studies for ammonia degradation 128

CHAPTER 8
BIODEGRADATION OF AMMONIA USING IMMOBILIZED HETEROTROPHIC BACTERIAL CULTURE
8.1 Methodology 134
8.1.1 Standardization of immobilization matrix composition 134
8.1.2 Immobilization of isolated Bacillus cereus SB1 135
8.1.3 Batch studies using immobilized cells 135
8.1.4 Fabrication of packed bed reactor 136
8.1.4.1 Continuous operation of a packed bed reactor 136
8.1.4.2 Optimization of hydraulic retention time 136
8.1.4.3 Packed bed reactor operation with optimized conditions 137
8.2 RESULTS AND DISCUSSION 138
8.2.1 Immobilization experiments 138
8.2.2 Batch studies using immobilized cells 139
8.2.3 Continuous experiment with immobilised cells 143
 i. Optimization of hydraulic retention time 143
 ii. Continuous operation of packed bed reactor 145

CHAPTER 9

CONCLUSION 148
SUMMARY 151
Recommendation of research work 154
Future scope of the work 155
REFERENCES 156
ANNEXTURE I - MICROBIAL IDENTIFICATION REPORT xviii
ANNEXTURE II - RESEARCH PUBLICATIONS xx