Chapter 6

The detour hull number of a graph

In this chapter, we introduce and study the detour and vertex detour hull numbers of
a graph [37, 38]. Certain general properties of detour hull number d,,(G) of a graph
G is studied. It is shown that for each pair of positive integers r and s, there is a
connected graph G with r detour extreme vertices each of degree s. It is proved that
every two integers a and b with 2 < a < b are realizable as the detour hull number
and the detour number respectively. For each triple D,k and n of positive integers
with2 <k <n-D+1and D > 2, there is a connected graph of order n, detour
diameter D and detour hull number k. It is proved that for a connected graph G
with diamp(G) < 4, dn(G) = dn(G); and for positive integers a,b and k > 2 with
a < b < 2a, there exists a connected graph G with radp(G) = a,diamp(G) = b and
dp(G) = k, where radp(G) and diamp(G) respectively denotes the detour radius and
the detour diameter of G. Graphs G for which d(G) = n — 1; and dp(G) = n — 2
are characterized. Certain general properties of z-detour hull number dh,(G) of a
graph G is studied. It is proved that for any vertex z in a connected graph G,
dn(G) < dh,(G) + 1 and for each pair of positive integers a,b with 2 < a < b+ 1,

there is a connected graph G and a vertex x such that d(G) = a and dh,(G) = b.
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Also, it is proved that every two integers a and b with 1 < a < b are realizable
as the z-detour hull number and the z-detour number respectively. We determine
bounds for dh,(G) and characterize graphs G which realize these bounds. Finally,
we investigate how the detour and vertex detour hull numbers of a graph are affected
by adding a pendant edge. If G’ is the graph obtained from G by adding a pendant
edge uv at a vertex v of G, then it is proved that dp(G) < dp(G’) < dn(G) + 1
and dh,(G) < dh:(G') < dhe(G) + 1 for every vertex z distinct from v. Also, we

characterize graphs for which the bounds are attained.

Detour hull number of a graph

A set S of vertices is a detour convez set if Ip[S] = S. The detour convez hull [S]p of
S in G is the smallest detour convex set containing S. The detour convex hull of S
can also be formed from the sequence {I5[S]}(k > 0), where I3[S] = S, I}5[S] = Ip[S]
and I%8[S] = Ip[I5[S]]). From some term on, this sequence must be constant. Let p
be the smallest number such that I%[S] = I5"[S]. Then I2[S] is the detour convex
hull [S]p of S. A set S of vertices of G is a detour hull set if [S]p = V and a detour
hull set of minimum cardinality is the detour hull number d,(G). Any detour hull set

of cardinality d(G) is a minimum detour hull set of G.

Example 6.1 For the graph G given in Figure 6.1, and- S = {v1,vs}, Ip[S] =
V —{v;} and I3[S] = V. Thus S is a minimum detour hull set of G and so dx(G) = 2.

Since S is not a detour set and SU{v7} is a detour set of G, it follows from Theorem
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1.40 that dn(G) = 3. Hence the detour number and detour hull number of a graph
are different. Note that the sets Sy = {v1,v2} and Sy = {vq, vs, v4, v, v7} are detour

convex sets in G.
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Figure 6.1: G

Definition 6.2 A vertex v in a connected graph G is a detour extreme vertez if it

is an initial or terminal vertex of any detour in G containing the vertex v.

Observation 6.3 A vertex v is detour extreme vertex if and only if V(G) - {v}

is a detour convex set in G.

Remark 6.4 Every end vertex of a graph G is a detour extreme vertex. However,
there are detour extreme vertices which are not end vertices. For the graph G in

Figure 6.2, w is a detour extreme vertex of G of degree 2.

Proposition 6.5 Fach detour extreme vertex of a nontrivial connected graph G
belongs to every detour hull set of G. In particular, each detour extreme vertez belongs

to every detour set of G.

Proof. Let z be a detour extreme vertex of G. Then z is either an initial or, terminal
vertex of any detour containing the vertex x in G. Hence it follows that = belongs
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Figure 6.2: Graphs G and H

to every detour hull set of G. Also, since every detour set is a detour hull set, we see

that each detour extreme vertex belongs to every detour set of G. ]

It is defined in [10] that a vertex v iﬂ a connected graph G is a detour vertez if
it belongs to every minimum detour set of G. It is clear that every detour extreme
vertex is a detour vertex. However, a detour vertex need not be a detour extreme
vertex. For the graph H in Figure 6.2, the set S = {u, v, w} is the unique detour set
of H and so w is a detour vertex of G. Since w lies on an z — y detour in H, w is not
a detour extreme vertex. It is clear that the set of all end vertices of a nontrivial tree

is a detour set as well as a detour hull set and so we have the following corollary.
Corollary 6.6  If T is a tree with k end vertices, then d,(T) = dn(T) = k.
Proposition 6.7  For a connected graph G of order n, 2 < dh(G) < dn(G) <n.

Proof. This follows from the fact that every detour set is a detour hull set and any

detour hull set contains at least 2 vertices. (]
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Proposition 6.8  If a connected graph G # K, has a full degree vertex v, then v

1s not a detour extreme vertex of G.

Proof. Suppose that v is a detour extreme vertex of G. Let u, u’ be two vertices such
that D(u,u’) = diamp(G). Let P : u = ug,u,...,ur = ¢’ be a detour diameteral
path in G. Then N(u) C V(P) and N(u') CV(P). fu=voru =v, say u =v,
then P is a Hamiltonian path. Hence the path P together with the edge vu' is a
Hamiltonian cycle in G and so v € Ip[uy, us], which is a contradiction to the fact that
v is a detour extreme vertex of G. So, assume that u # v and v’ # v. This implies

that v € N(u) C V(P), which is again a contradiction. Hence the result follows. &

Theorem 6.9  For each pair of positive integers r and s, there is a connected graph

G with r detour extreme vertices each of degree s.

Proof. If s = 1, then G = K, has the desired properties. Assume that s = 2. For
each i = 1,2,3, let P} be a u; — v; vertex disjoint paths of order 4. Let H; be the
graph obtianed from P} ’s by identifying the vertices uj, us,us as u and identifying
the vertices vy, v2,v3 as v. Let Hy be the totally disconnected graph K, on r vertices
such that H; and H, are vertex disjoint. Let G be the graph obtained from H; and
H; by joining each vertex of Hy to both v and v. The graph G is shown in Figure
6.3. We claim that V(G) — {w} is a detour convex set for each w € V(H;). Let
w € V(Hy). If r=1orr =2, then w ¢ Iplz,y] for z,y € V(H,) with w # z,y.
For r > 3, it is clear that D(z,y) = 5 for all z,y € V(H,) and any z — y path which

contains w with w # x,y has length 4. Hence w ¢ Ip[z,y| for all z,y € V(H,) — {w}.
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Figure 6.3: G

Also, we have D(u,v) = 3 and P : u,w,v is the unique u — v path which contains
w. Thus w ¢ Iplu,v]. Let x,y € V(H;) — {u,v}. If z and y are adjacent, then
D(z,y) = 5 and any = — y path that contains w has length 4. Also, if z and y are
nonadjacent, then D(z,y) = 6 or D(z,y) = 7; and any z — y path that contains w
has length D(z,y) — 1. Hence it follows that V(G) — {w} is a detour convex set and
so w is a detour extreme vertex of G. Thus G has r detour extreme vertices, each of
degree 2.

Assume that s > 3. Let M, be the complete multigraph with V(M,) = {w;, ws, ...,
ws} such that there are exactly two edges between every pair of distinct vertices of
M;. Subdividing each edges of M, twice, we obtain a graph Ss(Mj). For each pair
i, of integers with 1 < i < j <'s, let w;, uiji, viji, w; (I = 1,2) be the two w; — w;
path of length 3 in S(M,). Let H be the totally disconnected graph on r vertices
K, such that S3(M,) and H are vertex disjoint. Let G be the graph obtained from
Ss(M,) and H by joining each vertex w of H to each of the vertices w;(1 < i < s).
The graph G is shown in Figure 6.4 for s = 3. We show that every vertex of H is

detour extreme. We prove this for the case when s = 3 only, since the argument for
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Figure 6.4: G

s > 4 is similar. Let w € V(H). If r = 1 or r = 2, then it is clear that w ¢ Ip[z,y],
where z,y € V(H) with w # z,y. For r > 3, it is clear that any x — y path con-
taining the vertex w has length at most 7 for z,y € V(H) — {w}. Since D(z,y) = 8
for all z,y € V(H), it follows that w ¢ Ip[z,y] for all z,y € V(H) — {w}. Also,
D(uiji,vi;) = 8 and any u;; — v path containing the vertex w is of length at most
7. Similarly, D(uj1,vij2) = 10 and any wu;j; — v;;2 path containing the vertex w is of
length at most 9. Similarly, for the other vertices, it can be easily checked that any
T — y path containing the vertex w with w # z,y is of length at most D(z,y) — 1.
Hence it follows that w is a detour extreme vertex of G. Thus, G has r detour extreme

vertices each of degree s. "

Theorem 6.10  For each pair a,b of integers with 2 < a < b, there is a connected
graph G with dp(G) = a and dn(G) = b.
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Proof. If a = b, then K, has the desired properties. So, assume that a < b. Let

Gi(1 < i < b— a) be the graph given in Figure 6.5. If b—a = 1, then H = G;. If

Xi i

u,-‘

e

Figure 6.5: G,

b—a > 2, then let H be the graph obtained from thé G,’ s by identifying the vertices
Uiy ui+1(1 <4< b—a—1). Let G be the graph obtained from H by adding a — 1 new
vertices 1,82, .. .,84_1 and joining each s;(1 <i < a— 1) to vy_,. We show that the
graph G has the desired properties. Let S = {u1,s1,82,...,8,_1} be the set of end
vertices of G. Then it is clear that Ip[S] = V — {wy, w2, ..., wp_o} and I3[S] = V.
Hence by Proposition 6.5, S is a m.inimum detour hull set of G so that dy(G) = a.
Now, each w;(1 < i < b— a) lies only on the z; — z;,z; — t;, ¥; — t; and y; — 2; detours
and so w; is a detour vertex of G. Since S U {wy,ws, ..., wp_,} is a detour set of G,

it follows from Proposition 6.5 that dn(G) = b. ]

Lemma 6.11  Let S be a minimum detour hull set of a connected graph G and let
u,v € S. If w is a vertezx distinct from u and v such that it lies on a u — v detour in

G, thenw ¢ S.

Proof. If w € S, then S C Ip[S — {w}] and hence S — {w} is a detour hull set of
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G, which is a contradiction to S a minimum detour hull set of G. Thus the result

follows. |

Theorem 6.12  Let G be a connected graph with a cut vertex v and S a detour
hull set of G. Then
(i) Every component of G — v contains an element of S.

(ii) If S is a minimum detour hull set of G, then no cut vertex of G belongs to S.

Proof. (i). Let C be a component of G — v. Since v is a cut vertex, it is clear that
V(G) — V(C) is a detour convex set of G. Hence it follows that V(C) N S # ¢.

(7). Let S be a minimum detour hull set of G and let C1,Cs,...,Ck (kK > 2)
be the components of G — v. By (i), we see that V(C;) NS # ¢ fori = 1,2,...,k.
Since v is a cut vertex of G, it follows that v € Ip[uy, us], where u; € V(C1)N S and
uy € V(C2) N'S. Now, it follows from Lemma 6.11 that v ¢ S. This completes the

proof. [ ]
Corollary 6.13  IfG is a connected graph having k > 2 end-blocks, then dp(G) > k.

Theorem 6.14  Let G be a connected graph with p end vertices and k end-blocks
Bl,Bz,...,Bk such that IV(Bz)l Z 3 f07" 1 S ) S k. If dh(Bz) = ki, then dh(G) Z

p+ (Z?:l ki) — k.

Proof. If k¥ = 0, then by Proposition 6.5, the result follows. If p = 0 and k = 1,
then the graph G itself is a block and the result follows. For the remaining cases,

assume to the contrary that there exists a connected graph G with p end vertices
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and k end-blocks By, By, ..., By such that |V(B;)] > 3 and dp(B;) = k; (1 <@ < k)
for which dp(G) < p+ (3%, k) — k — 1. Then G contains a detour hull set S of
cardinality p + (Z’;l k) — k — 1. Consequently, at least one of the end-blocks B;
contains no more than k; — 2 vertices of S. Without loss of generality, let B; contain
at most ky — 2 vertices of 5 and let S; = SN V(B;) U {v}, where v € V(B) is the
cut vertex of G. Then |S;] < k; — 1 and S; is not a detour hull set of B;. Hence
there exists u € V(B;) such that u ¢ I}[S)]p, for any n > 0. Now, we claim that
IZ[S)NV(B;) C I3[Sy] for any n > 0. We prove this by induction on n. If n = 0,
then the claim is obvious. Let z € Ip[S|NV(B;). If z € S, then z € S; C Ip[Si).
So, assume that z ¢ S. We have z € Iply, 2] for some y,z € S. If z = v, then
z € S; and so z € Ip[Sy). Let.z # v. Since Bj is an end-block, it follows that at
least one of y and z, say y belongs to B; and so y € S;. If z € V(B,), then z € S
and so ¢ € Ip[Si]. So, assume that z ¢ V(B;). Let P be a y — z detour which
contains the vertex . Then the y — v subpath @ of P is a y — v detour in G. Hence
z € Iply,v] C Ip[Si]. Thus Ip[S|NV(B;) C Ip[Si]. Now, assume that the result is
true for n = k. Then I5[S]NV(B,) C I5[S1]. Let z € IS [SINV(By). If z € I5[9],
then by induction hypothesis, z € I5[S;], which is a subset of I5"[S;], and so we
are through. So, assume that z ¢ I%[S]. Then z € Iply, 2| for some y,z € I5[9].
Since z € V(By), as above, we see that at least one of y and z, say y belongs to
V(B;). Hence by induction hypothesis, y € IX[S;]. If 2 € V(B;), then again by
induction hypothesis, z € I§[S1] and so = € I5H'[S)]. If z ¢ V(Bi), then z € Iply, v]
with y € I5[S1] and v € ;. Since Sy C IE[S1], we see that z € I5'[S)]. Thus by
induction IB[S|NV(By) C I3[S1] for all n > 0. Now, since S is a detour hull set of G,
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there is an integer 7 > 0 such that I[S] = V(G). This implies that V(B;) C I§[S].
Also, since B, is an end-block of G, it is clear that I}[S;] = I3[Si]p, for all n > 0
and so Ip[S]p, = V(Bi). This is a contradiction to the fact that u ¢ I3[S;]p, for any

n > 0. Hence the result follows. |

Remark 6.15 The lower bound in Theorem 6.14 is strict. For the graph G in
Figure 6.6, each of the k£ end-blocks B; is such that dn(B;) = 2. Note that z is a
detour extreme vertex of G. Since the set S = {uy,us,...,up, T,v1,0,...,05} is &
detour hull set, it follows from Proposition 6.5 and Theorem 6.12 that di(G) = p+k+1
and so the bound in Theorem 6.14 is strict. Also, for the graph H = G — z, we have
dp(G) = p+ k and so the lower bound in Theorem 6.14 is sharp.

A
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Figure 6.6: G

Theorem 6.16  Let G be a unicyclic graph with the cycle C and k > 1 end vertices.

k+1 if exactly one vertex of C has degree > 3
Then dp(G) =

k otherwise.

Proof. Let S = {uj,us,...,ux} be the set of end vertices of G. For each vertex u;,
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there exists a unique vertex v; in C such that d(u;,v;) is minimum. If ekactly one
vertex of C' has degree > 3, then v; = vy = -+ = v, = v, say. Then it can be easily
seen that [S]p contains at most the vertex v from C and so S is not a detour hull set.
Let ¢/ be a vertex in C such that v’ is adjacent to v. Then Ip[SU {v'}] = V and so
it follows from Proposition 6.5 that S U {v'} is a minimum detour hull set of G and
so dp(G) = |S|+ 1=k + 1. Now, assume that C has at least two vertices of degree
> 3. Since G is unicyclic, it is clear that I plvi,v;] C Iplu;, ug] for v; # v;. Let P; be
the u; — v; path in G and let Q;; be a v; — v; detour in G. Then V(Q;;) C V(C), and
for v; # v;, P, together with Q;; followed by P; is a u; — u; detour in G. Now, let
be a vertex of G. If z ¢ V(C), then z € V(FB,) for some ¢ with 1 < i < k. Since C
has at least two vertices of degree > 3, it follows that x € Ip[u;, u;] for some j with
1<i#j<k. Now,let x € V(C). Let v and v’ be vertices in C such that deg(v) > 3
and deg(v') > 3. Then v = v, and v/ = v, for some r,s with 1 < r # s < k. If
T € Qrs, then z € Iplu,,us]. Otherwise, z € Ip[v/,y], where v';y € V(Q,;s) such
that v/ and y are adjacent. Thus we see that z € I3[u,,u,]. Hence it follows from

Proposition 6.5 that S is a minimum detour hull set of G and so dy(G) = |S|=%. ®

The detour hull number and the detour number

The following theorem is an immediate consequence of Theorem 1.41.

Theorem 6.17 If G is a connected graph of order n and detour diameter D, then

dn(G)<n—-D+1.

We give below a characterization theorem for trees.
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Theorem 6.18  For every non-trivial tree T' of order n and detour diameter D,

dp(T)y =n— D +1 if only if T is a caterpillar.

Proof. Let T be any non-trivial tree. Let u, v be two vertices in T such that D(u,v) =
Dand P:u=wy, vy, ..., Vp_1, yp = v be a detour diameteral path. Let k be the
number of end-vertices of T" and ! the number of internal vertices of T other than
U1,V2,...,Vp_1. Then D—1+1+k =n. By Cérol]ary 6.6, dp(T) =k=n—-D-1+1.
Hence dp(T) = n— D + 1 if and only if = 0, if and only if all the internal vertices

of T lie on the detour diameteral path P, if and only if T is a caterpillar.

Theorem 6.19  For each triple D,k and n of positive integers with 2 < k <
n— D41 and D > 3, there is a connected graph G of order n, detour diameter D

and detour hull number k.

Proof. Let G be the graph obtained from the cycle Cp : uy,us, ..., up,u; of order
D by (1) adding k — 1 new vertices vy, va, ..., Ux-1 and joining each vertex v;(1 <
i < k—1) to u; and (2) adding n — D — k + 1 new vertices wq,Wa, - .., Wn_p_k+1
and joining each vertex w;(1 < i <n— D —k+1) to both u; and uz. The graph G
has order n and detour diameter D and is shown in Figure 6.7. Now, we show that
dp(G) = k. Let S = {v1,va,...,vk_1} be the set of end vertices of G. It is clear that
Ip[S] = S U {u;} and I%[S] = Ip[S]. Thus [S]p = SU{ui} # V and so S is not a
detour hull set of G. Since Ip[S U {up}] = V, it follows from Proposition 6.5 that

SU{up} is a minimum detour hull set of G so that dp(G) = |S|+ 1 = k. |

It is proved in [4] that the detour radius and detour diameter of a connected graph
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Figure 6.7: G

G satisfy radp(G) < diamp(G) < 2radp(G). 1t is also proved that every pair a, b of
positive integers can be realized as the detour radius and detour diameter respectively
of some connected graph, provided a < b < 2a. We extend this theorem so that the

detour hull number can be prescribed as well, when a < b < 2a.

Theorem 6.20  For positive integers a,b and k > 2 with a < b < 2a, there ezists

a connected graph G with radp(G) = a,diamp(G) = b and dp(G) = k.

Proof. If a = 1 and b = 2, then G = K has the desired properties. So, let a > 2.
Let K, and Kj_, be the complete graphs of order a and b — a respectively such that
both are vertex disjoint. Let H be the graph obtained by identifying a vertex v of
K, and K;_,. Let H; be the graph obtained from H by adding k — 1 new vertices
Uy, Usg, - .., Ug_1 and joining each u;(1 < 3 < k — 1) to a vertex z # v of K,. Now,
if b— a = 1, then G be the graph obtained from H; by adding a new vertex u; and
joining it to v; if b — a > 2, then G be the graph obtained from H; by adding a
new vertex uy and joining it to a vertex y # v of Kj_,. Then it is clear that the set

S = {uy, ug,...,u} of end vertices of G is a detour hull set of G and so by Proposition
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a—1 if z € V(K,) and z # v,

a ifz=u;(1<i<k-1),
6.5, dp(G) = k. Note that D(v, z) = \

b—a-1 ifzeV(Ky_,) and z # uy,

b—a if £ = ug.

\
Since b < 2a, we have b — a < a. Hence it follows that ep(v) = a. Similarly, it
can be easily seen that ep(u;) = b for i = 1,2,...,k and ep(z) = b — 1 for all

z # v,u;(1 <1i < k). Hence it follows that radp(G) = a and daimp(G) = b. [ |

A graph G is said to be hypohamiltonian if G does not itself have a Hamiltonian

cycle but every graph formed by removing a single vertex from G is Hamiltonian.

Proposition 6.21  If G is a Hamiltonian or hypohamiltonian graph, then dn(G) =

dn(G) = 2.

Proof. If G is Hamiltonian, then G has a Hamiltonian cycle C. Then any two
adjacent vertices in C' is a detour set as well as a detour hull set of G and so dn(G) =

dp(G) = 2. If G is a hypohamiltonian graph, then for any vertex v, G — v has

a Hamiltonian cycle C : uy,u9,...,us_1, %1, Where u; is adjacent to v. Now, P :
U, U1, Ug, ..., Up_1 IS & U ~ U,_; Hamiltonian path in G. Hence S = {v,u,_1} is a
detour set as well as a detour hull set of G and so dn(G) = da(G) = 2. ||

Now, we introduce two classes of graphs I and Q given in Figures 6.8 and 6.9,

respectively, which are used in the proof of Theorem 6.22.
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Figure 6.9: Q

If G is a connected graph with diamp(G) < 4, then dn(G) =

Proof. If diamp(G) = 1, then G = K and so the result follows. Also, if diamp(G) =

2, then G = Ky ,(n > 2) or G = K3 and so dn(G) = da(G). Now, let diamp(G) = 3.

If G is a tree, then by Corollary 6.6, dn(G) = dn(G). So, assume that cir(G) > 3,

where cir(G) denotes the length of a longest cycle in G. Since diamp(G) = 3, it is

clear that cir(G) = 3 or cir(G) = 4. Y cir(G) =4, then G =Cy0or G =Cy+ e or

G = K, and so the result follows from Proposition 6.21. Let cir(G) = 3. Then the

graph G reduces to G = Kj,_1+e€ and so it is easily seen that dn(G) = ds(G). Now,

let diamp(G) = 4. If G is a tree, then the result follows. Assume that G is not a tree.

Since diamp(G) = 4, we have cir(G) < 5. If cir(G) = 3, then G belongs to the family
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I'. Hence it follows from Proposition 6.5 and Theorem 6.12 that dn(G) = dn(G) for
each G in I". Let cir(G) = 4. Then it is clear that G belongs to the family Q. It
follows from Proposition 6.5 and Theorem 6.12 that dn(G) = di(G) for each G in Q.
Now, let cir(G) = 5. Since diamp(G) = 4, it follows that order of G is 5 and hence
G is Hamiltonian. Then it tollows from Proposition 6.21 that dn(G) = dy(G). This

completes the proof. [ ]

Theorem 6.23  Let G be a connected graph of order n > 4. Then the following
are equivalent:

(i) dp(G) =n—1

(it) dn(G) =n -1

(iii) G = Kyn_1

Proof. By Theorem 1.42, it is enough to prove that (i) and (ii) are equivalent. Sup-
pose that dp(G) = n — 1. Then by Theorem 6.17, diamp(G) < 2 and so it follows
from Theorem 6.22 that dn(G) = n — 1. Conversely, Suppose that dn(G) = n — 1.
Then by Theorem 1.41, diamp(G) < 2 and so it follows from Theorem 6.22 that

dh(G) =n-—1. B

Theorem 6.24 Let G be a connected graph of order n > 5. Then the following
are equivalent:

(i) dp(G) =n -2

(i) dn(G) =n — 2

(iii) G is a double star or G = Ky -1 + ¢
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Proof. By Theorem 1.43, it is enough to prove that (i) and (ii) are equivalent. Sup-
pose that dy(G) = n — 2. Then by Theorem 6.17, diamp(G) < 3 and so it follows
from Theorem 6.22 that dn(G) = n — 2. Conversely, Suppose that dn(G) = n — 2.
Then by Theorem 1.41, diamp(G) < 3 and so it follows from Theorem 6.22 that

dh(G) =n—-2. [ ]

The vertex detour hull number of a graph

Let G be a connected graph and z a vertex in G. Let S be a set of vertices in G
such that ¢ S. Then S is an z-detour convez set if Ip[S]* = S. The z-detour
convez hull of S, [S}% is the smallest z-detour convex set containing S. The z-detour
convex set can also formed from the sequence {/ ISP}k > 0), where I3[S]® =
S, IL[S]® = Ip[S]® and IE[S]® = Ip[I5*[S]?]*. From some term on, this sequence
must be constant. Let p, be the smallest number such that I%[S]* = I%*1[S]®,
Then I77[S]® is the z-detour convex hull [S]}, of S. The set S is an z-detour hull set
if [S]} = V —{z} and an z-detour hull set of minimum cardinality is the z-detour hull
number dh,(G) of G. Any z-detour hull set of cardinality dh,(G) is the minimum
x-detour hull set or dz-hull set of G.

For the graph G in Figure 6.10, the minimum vertex detour hull numbers and
vertex detour numbers are given in Table 2.1. Table 2.1 shows that, for a vertex z,

the z-detour number and the z-detour hull number of a graph are different.
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2z u

Figure 6.10: G
Vertex Minimum vertex | Mimimum vertex detour Vertex Vertex
detour sets hull sets detour detour hull

number number
X {y,wh{zw}.{u,w} {w} 2 1
y (W) {w) 1 1
z {w} {w} 1 1
u {w} {w} 1 1
v Ol lewhlaw) | o] (owl (2], (uw) 2 2
w DhizL( | (xhLiyhizhinl 1 1

Table 2.1

It is clear that every minimum z-detour hull set of a connected graph G of order n
contains at least one vertex and at most n — 1 vertices. Also, since every z-detour

set is a z-detour hull set, we have the following proposition.

Proposition 6.25 Let G be a connected graph of order n. Then 1 < dh.(G) <

dz(G) < n —1 for every vertez x in G.

Theorem 6.26  If a graph G is Hamiltonian or hypohamiltonian of order n, then

dh.(G) =1 for every vertex x in G.
Proof. This follows from the fact that ep(u) = n — 1 for each vertex u in G. [

Problem 6.27  Characterize graphs G for which dh,(G) = 1 for every vertex z in
G.
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Proposition 6.28  Let S be a minimum x-detour hull set of G and lety € S. If 2

is a verter distinct from y such that z € Iply|*, then z ¢ S.

Proof. Assume to the contrary, that z € S. Since z € Iply]* C Ip[S — {z}]*, we
have S C Ip[S—{z}]*. This implies that S—{z} is an z-detour hull set of G, which is

a contradiction to S a minimum z-detour hull set of G. Hence the result follows. W

Definition 6.29 Let = be a vertex in a connected graph G. A vertex z # x is an

z-detour extreme verter if z ¢ Ip[y]® for any vertex y in G with y # z.

Example 6.30 Each end vertex of a graph G other than the vertex z (whether z
is an end vertex or not) is an z-detour extreme vertex of G. Moreover, each detour
extreme vertex other than x (whether x is detour extreme or not) is an z-detour
extreme vertex of G. For the graph G in Figure 6.11, it is clear that z ¢ Ip[w]® for all
w # z and so z is an z-detour extreme vertex of G. It is to be noted that z € Ip[u,v]

and so z is not a detour extreme vertex of G.

Figure 6.11: G

Proposition 6.31 Let G be a connected graph. Then a vertezx z in G is detour

extreme if and only if z is an z-detour extreme vertex for each verter x # z.
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Proof. Suppose that z is a detour extreme vertex of G. Then z is either an initial
vertex or a terminal vertex of any detour that contians z. Hence z ¢ Ip[y]® for any
z # z,y. Thus z is an z-detour extreme vertex of G for each x # z.

Conversely, suppose that z is an z-detour extreme vertex for each z # 2. Then
z ¢ Iply]® for any y # z and = # 2. That is, 2 ¢ Ip[z,y] for any = # z and y # z.

This implies that z is a detour extreme vertex of G. |

Theorem 6.32  Let x be a vertex of a connected graph G. Let S be any z-detour
hull set of G. Then

(i) Each x-detour extreme vertex of G belongs to S.

(i1) If v is a cut vertex of G and C a component of G — v such that z ¢ V(C), then
SNV(C) # ¢.

(1ii) No cut-vertex of G belongs to any minimum xz-detour hull set of G.

Proof. (i) Let y be an z-detour extreme vertex of G. Then y # x. Suppose that
y ¢ S. Then y € I%[S]® for some k > 1. Let I be the smallest positive integer such
that | < k and y € I5[S]*. Then! > 1 and y ¢ I5'[S]>. Hence y € Ip[z]® for
some z € IZD'I[S]x. This implies that y # 2z, which is a contradiction to y an z-detour
extreme vertex of G. Thus y belongs to every z-detour hull set of G.

(ii) Suppose that SNV (C) = ¢. It is clear that for each y € V — V(C), Ip[y]* C
V —V(C). Since SNV (C) = ¢, it follows that I5[S]* C V — V(C) for all k > 0 and
so [S]% # V, which implies that S is not an z-detour hull set of G, a contradiction.
Thus V(C)N S # ¢.

(iii) Let S be any minimum z-detour hull set of G. Let v be a cut vertex of G and

150



C1,Cs, ..., Ck(k > 2) the components of G — v. If z = v, then by definition, = ¢ S.
Assume that z € V(C). By (ii), we have SNV(Cy) # ¢. Let y € SNV(C,). Then

v € Iply]*® and it follows from Proposition 6.28 that v ¢ S. [ |

Corollary 6.33 Let T be a tree with k end vertices. Then dh,(T) = k — 1 or
dh.(T) = k according to whether z is an end vertex or not. In fact, if W is the set

of all end vertices of T, then W — {x} is the unique minimum z-detour hull set of G.
Proof. This follows from Theorem 6.32(i) and (iii). |
Theorem 6.34  For any vertex x in a connected graph G, dh(G) < dh,(G) + 1.

Proof. First, we claim that for any set S C V — {z}, I§[S]® C I5[S U {z}] for all
k > 0. We use induction on k. If k£ = 0, then the result is obvious. Let y € Ip[S]®.
Ifye S, theny € Ip[SU{z}]. If y ¢ S, then y € Ip[z]* for some z € S. Since
Iplz]* = Iplz, 2], we see that y € Ip[S U {z}]. Hence Ip[S]* C Ip[S U {z}]. Now,
assume that I4[S]* C IL[SU{z}]. Let y € I5[S]®. If y € I4[S]*, then by induction
hypothesis, y € IL[S U {z}] C IF' S U {z}]. If y ¢ I4[S]®, then y € Ip[2]® for
some z € I5[S]*. Hence by induction hypothesis, z € I5[S U {z}]. Since Ip[z]® =
Iplr,2] and z,z € IL[S U {z}], we have y € I5*[S U {z}]. Thus by induction,
I5[S]® C IE[S U {z}] for all k > 0. Now, let S be a minimum z-detour hull set of G.
Then there exists an integer k£ > 0 such that I%[S]* = V — {z}. It follows from the
above claim that I5[S U {z}] = V. Hence SU {z} is a detour hull set of G. Thus

dh(G) < |SU{z} =|S|+1=dh(G) + 1. [
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In view of Theorem 6.34, we have the following realization result.

Theorem 6.35  For each pair of integers a,b with 2 < a < b+ 1, there is a

connected graph G and a vertex x such that dh(G) = a and dh,(G) = b.

Proof. Let Cg : vy, vy, vs,v4,vs5,06,v1 be a cycle of order 6. Let H be the graph
obtained from Cg by adding the new vertices uj, uo, ..., u, and joining u, to vs and
also U, U, ...,Us—1 t0 V1. Let Kp_oyq1 be the totally disconnected graph on b —
a + 1 vertices with the vertex set V(Kp_oy1) = {wi,ws,. .., Wy_qq1} such that H
and Kj_,41 are vertex disjoint. Let G be the graph in Figure 6.12 obtained from

H and K}_,41 by joining each w;(1 < i < b—a+ 1) to both v; and vy. Let S’ =

2% W V3

Ug=X

Figure 6.12: G

{u1, U, ..., uq} be the set of end vertices of G. Then v; € Ip[S’] for each i(1 < i < 6).
Since D(vq,vs) = 6, it is clear that w; € Iplvs,vs] for each j(1 < j < b—a+1).
Hence I3[S'] = V. Thus, by Proposition 6.5, S’ is a minimum detour hull set of
G so that dh(G) = |S'| = a. Now, take £ = u,. Then D(z,u;) = 5 for each

i(1 <7< a-1)andsow; ¢ Iplwl® for any j(1 < j < b—a+1). Similarly,
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D(z,v;) = 6 for i = 3,5 and any x — v; path that contains w;{(1 < j <b-a+1)
has length 5 and so w; ¢ Ip[vs]® and w; ¢ Ip[vs]® for any j(1 < j <b—a+1); and
D(z,v;) =5 for i = 2,6 so that w; ¢ Ip[v]® and w; ¢ Ip[ve)®. Also, D(z,w;) = 5

and w; ¢ Iplw;])® for i # j and it is clear that w; ¢ Ip[n|* and w; ¢ Iplvy]® for

any j(1 < j < b—a+1). Hence it follows that wi,ws,..., wy_qr1 are z-detour
extreme vertices of G. Since uy,us, ..., U1 are also z-detour extreme vertices of G
and the set S = {uy,us, ..., U1, W1, Wa, ..., Wy_qs1} iS an z-detour hull set of G,

it follows from Theorem 6.32(i) that S is a minimum z-detour hull set of G. Thus

dh(G) =|S|=a—-1+b—a+1=»>. This completes the proof. |

In view of Proposition 6.25, we have the following realization result.

Theorem 6.36  For each pair a,b of integers with 1 < a < b, there is a connected

graph G and a vertex = in G such that dh,(G) = a and d.(G) =b.

Proof. If a = b, then let G = Kj,441. Let z be an end vertex of G. Then G has
the desired properties. So, assume that a < b. For each ¢ = 1,2,...,b — a, let
Coé,i © V1,4, V2,4, V34, V4, Usi, Vs, V1; De vertex disjoint cycles of order 6. Let H be the
graph obtained from the cycles Cg;(1 < ¢ < b — a) by joining the vertices vy; and
vei+1 fori=1,2,...,b—a — 1. Let G be the graph in Figure 6.13 obtained from H
by adding a + 1 new vertices z, uy, ug, ..., %, and joining each u;(1 < i < a) to vg1;
and = to vy (p_q). Let S = {uy,uz,...,u,} be the set of end vertices of G. We have
D(u;,x) =5(b—a)+1and Ip[S]® =V — {z;v11, 012, - -, V19— }- Since vy; € Iplvs;]*

fori=1,2,...,b— a, it follows that I%[S]* = V — {z} and it follows from Theorem
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V4,1 Va2 V4, ba

Figure 6.13: G

6.32(i) that S is a minimum z-detour hull set of G. Thus dh,(G) = a.

Next, we prove that d,(G) =b. For i =1,2,...,b—a, it is clear that vy ; ¢ Ip[y]”
for any y ¢ V(Cs;). Let T; = {v1,, s, a4, Vs, }. Then it is straight forward to verify
that every z-detour set contains at least one vertex from each T; and by Theorem
1.45,d.(G) > a+b—a=»>. Since T = SU{v11,V12,...,V14_a} is an z-detour set of

G, we have d,(G) = b. ]

The following theorem is an immediate consequence of Theorem 1.46.

Theorem 6.37  For any vertex x in a connected graph G of order n, dh,(G) <

n — ep(z).

In view of Theorem 6.37, we have the following realization result.

Theorem 6.38  For integers a,b andn with1 < a <n-—>bandb > 3, there is a

connected graph G of order n and a verter = such that dh,(G) = a and ep(z) = b.

Proof. Let P, : £ = ug,uy,...,u = v be a path of length b. Let H be the graph
obtained from P, by adding a — 1 new vertices vy, va, . . ., Us_1 and joining each v;(1 <

i < a—1) to up_;. Let G be the graph in Figure 6.14 obtained from H by adding
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n — a — b new vertices wy, ws, ..., Wy_q_p and joining each w;(1 < i< n—a-b) to
both 4y and up. Then G has order n and ep(z) = b. Also, it is clear that the set
S = {v1,va,...,Ua_1,up} of end vertices is an z-detour hull set of G and so by Theorem

6.32(i), S is the unique minimum z-detour hull set of G. Hence dh,(G) = |S|=a. B

Va1 w2

Up1

Wead

Figure 6.14: G

Theorem 6.39  Let G be a connected graph of order n > 2. Then dh,(G) =n—1

for every verter x in G if and only if G = Ks.

Proof. Suppose that G = K. Then dh,(G) =1 = n — 1. The converse follows from

Theorem 6.37. [ |

Theorem 6.40 Let G be a connected graph of order n > 3. Then dh,(G) =n—2

for every vertex z in G if and only if G = Kj.

Proof. Suppose that G = K3. Then by Theorem 6.26, dh,(G) = 1 = n — 2 for every
vertex x in G. Conversely, suppose that dh,(G) = n — 2 for every vertex z in G.
Then by Theorem 6.37, ep(z) < 2 for every vertex z in G. It follows from Theorem
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6.39 that ep(z) # 1 for every vertex z in G. Thus ep(z) = 2 for every vertex z
in G; or the vertex set can be partitioned into V; and V;, such that ep(z) = 1 for
xz € V1 and ep(z) = 2 for x € V5. Thus either radp(G) = diamp(G) = 2; or we have
radp(G) = 1 and diamp(G) = 2. This implies that either G = K3 or G = Ky ,_1.
If G = Kj,-1, then by Corollary 6.33, dh,(G) = n — 1 for the cut vertex z and
dh,(G) = n—2 for any end vertex y in G, which is a contradiction to the hypothesis.

Hence G = K. |

Theorem 6.41 Let G be a connected graph of order n > 2. Then G = Kj,_3
if and only if the vertex set V' can be partitoned into two sets Vi and V3 such that

dh(G)=n—1 forz € V; and dhy(G) =n —2 fory € V,.

Proof. Suppose that G = K;,,_;. Then dh,(G) = n — 1 for the cut vertex z in G
and dh,(G) = n — 2 for any end vertex y in G. Conversely, suppose that the vertex
set V can be partitoned into two sets V) and V5 such that dh,(G) = n—1 for z € Vj;
and we have dh,(G) = n — 2 for y € V,. Then by Theorem 6.37, ep(z) = 1 for each
z € Vi and ep(y) = 1 or ep(y) = 2 for each y € V,. It follows from Theorem 6.39
that ep(y) = 2 for some y € V,. Hence radp(G) = 1 and diamp(G) = 2. Thus

G = Kl,n—l- n
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Theorem 6.42  Let G be a connected graph of order n > 5. Then G is a double
star or G = Ky -1+ € if and only if the vertex set V can be partitoned into two sets

Vi and V; such that dh,(G) =n —2 for x € V; and dh,(G) =n— 3 fory € V5.

Proof. Suppose that G is a double star or G = K;,_1 +e. Then it follows from
Theorem 6.32 that dh,(G) = n — 2 or dh,(G) = n — 3 according to whether z is a
cut vertex of G or not. Conversely, suppose that dhx(G) =n—2forz € V; and
dh;(G) = n — 3 for x € V5. Then by Theorem 6.37, ep(z) < 3 for every = and so
diamp(G) < 3. It follows from Theorem 6.39 that G # K3 and so diamp(G) > 2. If
diamp(G) = 2, then G is the star K;,_; and by Theorem 6.41, dh,(G) =n — 1 or
dh.(G) = n — 2 for every vertex z. This is a contradiction to the hypothesis. Now,
suppose that diamp(G) = 3. If G is a tree, then G is a double star. If G is not a tree,
then it is clear that 3 < cir(G) < 4, where cir(G) denotes the length of a longest cycle
in G. We prove that cir(G) = 3. Suppose that cir(G) = 4. Let Cy : vy, v2,v3,v4, 11
be a 4-cycle in G. Since n > 5 and G is connected, there is a vertex £ not on Cy
such that z is adjacent to some vertex say, v; of G. Then z,v;, vy, v4,v4 is a path
of length 4 in G and so diamp(G) > 4, which is a contradiction. Thus cir(G) = 3.
Also, if G contains two or more cycles, then it follows that diamp(G) > 4. Hence G
contains a unique triangle, say Cjs : vy, vs,v3,v1. Since n > 5, at least one vertex of
C3 has degree at least 3. If there are two or more vertices of Cs having degree at least
3, then diamp(G) > 4, which is a contradiction. Thus exactly one vertex of C3 has

degree at least 3 and it follows that G = K3 ,_1 + e. This completes the proof. |
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Detour and vertex detour hull numbers and addi-
tion of a pendant edge

In this section we discuss how the detour hull number and the vertex detour hull
number of a connected graph are affected by adding a pendant edge to G. Let G’ be
a graph obtained from a connected graph G by adding a pendant edge uv, where u

is not a vertex of G and v is a vertex of G.

Theorem 6.43 If G’ is a graph obtained from a connected graph G by adding a

pendant edge uwv at a vertex v of G, then dp(G) < dp(G') < di(G) + 1.

Proof. Let S be a minimum detour hull set of G and let S’ = S U {u}. We show
that S’ is a detour hull set of G’. Let z € V(G’). If z = u, then z € S’. So, assume
that z € V(G). Then z € I5[S]¢ for some k > 0. Since I3[S]e = I}[S]e for all
n > 0, we have z € I5[S]g. Also, since S C S', we see that I3[Sle C IR[S e
for all n > 0. Hence z € I5[S|e>. This implies that S’ is a detour hull set of G’
so that dp(G") < |S'] = |S| +1 = di(G) + 1. For the lower bound, let S’ be a
minimum detour hull set of G’. Then it follows from Proposition 6.5 and Theorem
6.12 that w € S’ and v ¢ S'. Let S = (' — {u}) U {v}. We prove that S is a
detour hull set of G. For this, first we claim that I§[S]e — {u} C I5[S]c for all
k > 0. We use induction on k. Since S’ — {u} C S, the result is true for £ = 0. Let
k=1andlet z € Ip[S')e — {u}. Thenz # u. Ifz € S, thenz € S C Ip[S)e.
If £ ¢ ', then there exist y,z € S’ such that z € Ip[y,2]er with z # y,2. If

y # u and z # u, then y,z € S and so Iply, zlg = Ipy,z]er. Thus z € Ip[Se.
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Now, let y = u or z = u, say z = u. Since v is a cut vertex of G’, it follows that
z € Ip[y,v]le: = Iply,v]¢ and hence z € Ip[S]g. Assume that the result is true for
k =1. Then I4[S"¢ — {u} C I4[S]g. Now, let = € I5[S]e — {u}. If z € T[S,
then by induction hypothesis, we have z € IL[S]¢ C I5[Sle. If z ¢ I5[S"]¢r, then
there exist y,z € I5[S")¢r such that z € Iply,2]e with z # y,2. If y # u and
z # u, then it follows from induction hypothesis that y,z € I4[S]g. Also, since
Iply, 2Je = Iply, 2|, we have = € IF}[S]g. Let y = u or z = u, say z = u. Then
y # u and so by induction hypothesis, y € I4[S]g. Since v is a cut vertex of G’, it
follows that = € Iply,v]e = Iply,v]e. Also, since v € S C I5[9]g, it follows that
z € I5[S]¢. Hence the proof of the claim is complete by induction. Now, since S’ is
a minimum detour hull set of G, there is an integer r > 0 such that I}[S"|¢r = V(G')
and it follows from the above claim that I}[S]g = V(G). Thus S is a detour hull set

of G so that d,(G) < |S| = |S’| = dn(G’). This completes the proof. [

Remark 6.44 The bounds for dy(G’) in Theorem 6.43 are sharp. Let G’ be the
graph obtained from the graph G in Figure 6.11, by adding a pendant edge at one
of its end vertices. Then dy(G’) = dn(G) = 2. If G’ is obtained from G by adding a

pendant edge at one of its cut vertices, then dp(G’) = dip(G) + 1.

Theorem 6.45 Let G’ be a graph obtained from a connected graph G by adding a

pendant edge uv at a vertex v of G. Then dp(G) = dn(G’) if and only if v is a vertex

of some minimum detour hull set of G.

Proof. First, assume that there is a minimum detour hull set S of G such that v € §.
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Let S’ = (S — {v}) U{u}. Then |S'| = |S|. We show that S’ is a detour huil set of
G'. First, we claim that I5[S]e C IEt![S]e for all k > 0. We prove this by using
inductionon k. Let k =0. Let z € S. If z # v, thenz € S’ C Ip[S']e. If z = v, then
z € Iply,uler C Ip[S']er, where y € S such that y # v. Thus S C Ip[S']e. Assume
the result for k = I. Then I,[S)¢ C 15[ Let x € I'5'[S]g. If 2 € I4[S]¢, then
by induction hypéthesis, z € I5Ser C I5?[S)er. If x ¢ I4[S]g, then there exist
Yy, z € I5[S)g such that z € Iply,z]e = Ip[y, zJe- By induction hypothesis, we have
y,z € IF[S")er and so x € I52[S')r. Hence by induction I%[S]¢ C I5[S')¢ for all
k > 0. Now, since S is a detour hull set of G, there exists an integer 7 > 0 such that
I3[S]e = V(G) and it follows from the above claim that I, [S']g = V(G’). Thus S’
is a detour hull set of G so that d,(G’) < |S’| = |S| = di(G). The other inequality
follows from Theorem 6.43.

Converesly, let dp(G) = dp(G’). Let S’ be a minimum detour hull set of G'.
Then it follows from Proposition 6.5 and Theorem 6.12 that v € S’ and v ¢ S’. Let
S = (8’ — {u})U{v}. Then, as in the proof of Theorem 6.43, we can prove that S is a
detour hull set of G. Since |S| = |S'| = di(G’) = dn(G), we see that S is a minimum

detour hull set of G and v € §. This completes the proof. ]

Theorem 6.46  Let G be a connected graph and let x be any vertex in G. If G' is

a graph obtained from G by adding a pendant edge xu, then dh (G') = dh,(G) + 1.

Proof. Let S be a minimum z-detour hull set of G and let S’ = S U {u}. Then,
as in Theorem 6.43, it is straight forward to verify that I}[S]E C IB[S)& for all
n > 0. Since S is an z-detour hull set of G, there is an integer » > 0 such that
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IH[S)E = V(G) — {z} and it is clear that I%[S')% = V(G') — {z}. Hence §’ is an
z-detour hull set of G’ so that dh,(G’) < |S'| = dhy(G) + 1. Now, suppose that
dh,(G') < dhz(G)+ 1. Let S’ be a minimum z-detour hull set of G’. Then, by
Theorem 6.32, u € §'. Let S = S’ — {u}. Then, as in Theorem 6.43, it is straight
forward to prove that I}[S')%, — {u} C IB[S]% for all n > 0. Since S’ is an z-detour
hull set of G, there is an integer r > 0 such that I}[S")Z, = V(G') — {z}. Hence
I5[S)E = V(G) — {z}. Thus S is an z-detour hull set of G so that dh.(G) < |S| =
dhy(G") — 1, which is a contradiction to dh,(G') < dh,(G) + 1. Hence the result

follows. . (]

Theorem 6.47  Let G’ be a graph obtained from a connected graph G by adding a

pendant edge uv at a vertex v of G. Then dh,(G') = dh,(G).

Proof. Let S be a minimum v-detour hull set of G. Then v ¢ S. As in Theorem
6.43, it is straight forward to prove that I}[S]% C I3[S])% for all n > 0. Since S is a
v-detour hull set of G, there is an integer r > 0 such that I}[S]% = V(G) — {v}. Now,
since v € Ip[z]¢ for any z € S, it follows that I},[S]4 = V(G') — {u}. Hence S is a
u-detour hull set of G’ so that dh,(G") < |S| = dh‘v(G). For the other inequality, let T
be a minimum u-detour hull set of G’. Then u ¢ T and by Theorem 6.32(iii), v ¢ T.
As in Theorem 6.43, it is straight forward to prove that I3[T)%, — {v} C I}[T)% for
all n > 0. Since T is a u-detour hull set of G’, there is an integer r > 0 such that
ILT)% = V(G') — {u}. Hence it follows that I;[T|g = V(G) — {v} and T is a

v-detour hull set of G. Thus dh,(G) < |T| = dh,(G’). This complets the proof. &






