<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Molecular structures of glycine and alanine isomers</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Molecular structures of L-leucine, isoleucine and L-valine</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Molecular structures of L-arginine and L-asparagine</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Molecular structures of glutamic acid and lysine</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Molecular structures of threonine and tyrosine</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>Molecular structures of L-histidine and L-proline</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>Panalytical X'pert Pro powder X-ray diffractometer</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>Bruker Kappa Apex II single-crystal diffractometer</td>
<td>43</td>
</tr>
<tr>
<td>9</td>
<td>Interferometer arrangements for FTIR</td>
<td>44</td>
</tr>
<tr>
<td>10</td>
<td>Perkin Elmer RX 1 FTIR Spectrophotometer</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>Vario EL III Element Analyser</td>
<td>46</td>
</tr>
<tr>
<td>12</td>
<td>PerkinElmer's LAMBDA 35 UV-Vis Spectrophotometer</td>
<td>47</td>
</tr>
<tr>
<td>13</td>
<td>Idealised reflection and transmission of light</td>
<td>49</td>
</tr>
<tr>
<td>14</td>
<td>Schematic diagram of a power compensation DSC</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>Shimadzu HMV-2T microhardness tester</td>
<td>53</td>
</tr>
<tr>
<td>16</td>
<td>Diamond pyramid indenter used for the Vickers test</td>
<td>54</td>
</tr>
<tr>
<td>17</td>
<td>Schematic experimental setup for SHG efficiency measurement</td>
<td>55</td>
</tr>
<tr>
<td>18</td>
<td>Photograph of the grown β-alanine single crystal</td>
<td>60</td>
</tr>
<tr>
<td>19</td>
<td>Indexed powder X-ray diffractogram of β-alanine single crystal</td>
<td>62</td>
</tr>
<tr>
<td>20</td>
<td>FTIR spectrogram of β-alanine</td>
<td>62</td>
</tr>
<tr>
<td>21</td>
<td>UV-Vis absorbent spectrum of β-alanine</td>
<td>64</td>
</tr>
</tbody>
</table>
Figure 22. Tauc’s plot of β-alanine 65
Figure 23. UV-Vis transmission spectrum of β-alanine 65
Figure 24. DRS spectrum of β-alanine showing wavelength versus reflectance 66
Figure 25. DRS plot of β-alanine showing energy versus (K/S) hv^2 67
Figure 26. DSC thermogram of β-alanine 68
Figure 27. TGA, DTA thermogram of β-alanine 68
Figure 28. Variation in the Vickers hardness HV with load P of β-alanine 70
Figure 29. Variation of log d with respect to log P of β-alanine 70
Figure 30. Variation of dielectric constant with log frequency 72
Figure 31. Variation of dielectric loss with log frequency in β-alanine 72
Figure 32. The frequency dependent AC conductivities (x 10^-6 mho/m) of β-alanine 73
Figure 33. Z' versus Z'' plot of β-alanine at 30 °C 73
Figure 34. Photograph of the BACC single crystals 74
Figure 35. Indexed powder X-ray diffractogram of BACC (experimental) 75
Figure 36. PXRD pattern of BACC (simulated from the SC-XRD data) 76
Figure 37. Asymmetric unit of BACC 77
Figure 38. Crystal packing diagram of BACC 77
Figure 39. FTIR spectrum of BACC 81
Figure 40. UV-Vis absorbent spectrum of BACC 84
Figure 41. Tauc's plot of BACC 84
Figure 42. UV-Vis transmittance spectrum of BACC 85
Figure 43. DRS graph showing wavelength versus reflectance of BACC 86
Figure 44. DRS plot of BACC showing energy versus (K/S) hv^2 86
Figure 45. Photoluminescent spectrum of BACC

Figure 46. DSC thermogram of BACC

Figure 47. TGA and DTG thermogram of BACC

Figure 48. Variation in the Vickers hardness HV with load P of BACC

Figure 49. Variation of log d with respect to log P of BACC

Figure 50. Variation of dielectric constant with log frequency

Figure 51. Variation of dielectric loss with log frequency in BACC

Figure 52. The frequency dependent AC conductivities (x 10^5 mho/m)

Figure 53. Photograph of the BAPC single crystal

Figure 54. Indexed powder X-ray diffractogram of BAPC

Figure 55. FTIR spectrogram of BAPC

Figure 56. UV-Vis absorbent spectrum of BAPC

Figure 57. Tauc's plot of BAPC

Figure 58. UV-Vis transmission spectrum of BAPC

Figure 59. DRS graph showing wavelength versus reflectance of BAPC

Figure 60. DRS plot of BAPC showing energy versus (K/S) hv^2

Figure 61. Photoluminescent spectrum of BAPC

Figure 62. DSC, TGA thermogram of BAPC

Figure 63. Variation in the Vickers hardness HV with load P of BAPC

Figure 64. Variation of log d with respect to log P of BAPC

Figure 65. Variation of dielectric constant with log frequency

Figure 66. Variation of dielectric loss with log frequency

Figure 67. The frequency dependent AC conductivities (x 10^6 mho/m) of BAPC
Figure 68. Photograph of the grown BALS crystal

Figure 69. Indexed powder X-ray diffractogram of BALS

Figure 70. PXRD pattern of BALS (simulated from the SC-XRD data)

Figure 71. The asymmetric unit of BALS with atom labels

Figure 72. Crystal packing of BALS along a-axis, showing tetrahedra

Figure 73. Molecular packing of BALS as viewed down the a-axis.

Figure 74. FTIR spectrogram of BALS

Figure 75. UV-Vis absorption spectrum of BALS

Figure 76. Tauc's plot of BALS

Figure 77. UV-Vis transmission spectrum of BALS

Figure 78. DRS graph of BALS showing wavelength versus reflectance

Figure 79. DRS plot of BALS showing energy versus (K/S) hv²

Figure 80. DSC thermogram of BALS

Figure 81. TGA, DTA thermogram of BALS

Figure 82. Variation in the Vickers hardness HV with load P of BALS

Figure 83. Variation of log d with respect to log P of BALS

Figure 84. Variation of dielectric constant with log frequency

Figure 85. Variation of dielectric loss with log frequency

Figure 86. The frequency dependent AC conductivities (× 10⁻⁶ mho/m) of BALS

Figure 87. Photograph of the grown crystals of BADP

Figure 88. Indexed powder X-ray diffractogram of pure ADP

Figure 89. Indexed powder X-ray diffractogram of BADP

Figure 90. FTIR spectrogram of BADP
Figure 91. UV-Vis absorbent spectrum of BADP

Figure 92. Tauc's plot of BADP

Figure 93. UV-Vis transmission spectrum of BADP

Figure 94. DRS graph showing wavelength versus reflectance of BADP

Figure 95. DRS plot of BADP showing energy versus (K/S) hv^2

Figure 96. DSC thermogram of BADP

Figure 97. TGA, DTA thermogram of BADP

Figure 98. TGA, DTA Thermogram of pure ADP

Figure 99. Variation in the Vickers hardness HV with load P of BADP

Figure 100. Variation of log d with respect to log P of BADP

Figure 101. Variation of dielectric constant with log frequency

Figure 102. Variation of dielectric loss with log frequency

Figure 103. Z' versus Z'' plot of BADP at 150 °C

Figure 104. The frequency dependent AC conductivities (x 10^{-5} mho/m) of BADP

Figure 105. Photograph of the grown BKDP crystal

Figure 106. Indexed powder X-ray diffractogram of BKDP

Figure 107. FTIR spectrogram of BKDP

Figure 108. UV-Vis absorbent spectrum of BKDP

Figure 109. Tauc's plot of BKDP

Figure 110. UV-Vis transmission spectrum of BKDP

Figure 111. DRS graph showing wavelength versus reflectance of BKDP

Figure 112. DRS plot of BKDP showing energy versus (K/S) hv^2

Figure 113. DSC thermogram of BKDP
Figure 114. TGA DTA thermogram of pure KDP 154

Figure 115. TGA, DTA thermogram of BKDP 154

Figure 116. Variation in the Vickers hardness HV with load P of BKDP 155

Figure 117. Variation of log d with respect to log P in BKDP 156

Figure 118. Variation of dielectric constant with log frequency 158

Figure 119. Variation of dielectric loss with log frequency 158

Figure 120. Z' versus Z" plot of BKDP at 80 °C 159

Figure 121. The frequency dependent AC conductivity (x 10⁻⁵ mho/m) of BKDP 159