CHAPTER 6

TRANSITIVE CLOSURE ALGORITHM TO STUDY GEOMAGNETIC COASTAL EFFECTS

The utility of fuzzy set theory in cluster analysis and pattern recognition has been evolving since the mid-1960s, in conjunction with the emergence and evolution of computer technology. The classification of objects into categories is the subject of cluster analysis. The aim of this chapter is to employ transitive closure algorithm of fuzzy set theory to examine the interrelationship of geomagnetic coastal and other effects at Indian Observatories. Data from the Observatories used for the present studies are Alibag on the west coast, Visakhapatnam and Pondicherry on the east coast, Hyderabad and Nagpur as central inland stations which are located far from either of the coasts and all the above stations are free from the influence of the day-time equatorial electrojet. It has been found that Alibag and Pondicherry Observatories form a separate cluster showing anomalous variations in the vertical (Z) component. H and D components form different clusters. Analytical technique and the results of Fuzzy clustering analysis are discussed in this chapter.

6.1 Introduction

Geomagnetic Quiet day (Sq) variations have been widely analyzed by many scientists. There is an obvious annual increase in amplitude during the summer months and a seasonal shift of the maximum early in summer and late in winter for solar quiet day variations (Sq) at middle- and low-latitude stations (Campbell [17]). It is only approximately true that Sq depends on local time and latitude only. There is a distinct, although small, longitude effect (Parkinson [54]). The quiet day maximum minimum range in H (Yacob and Sen [86]) and 'Best' estimates of the amplitudes of diurnal and semidiurnal component of Sq(H) and their annual variations (Rangarajan [57]), the latitudinal Profile over India of Sq(H) range and of its prominent periodicities (Yacob [87]) have been studied in detail. Quiet day mean hourly variations of geomagnetic field have been utilized to study the solar control of low latitude quiet day magnetic field (Bhargava and Rangarajan [15]) and local time and solar cycle features of the day-to-day variability in horizontal intensity (Bhargava and Yacob [13] [14]), daily variations at low latitudes Rastogi [68] and daily variations at low latitudes associated with stable solar wind flow
Rangarajan [60] etc. have been analyzed based on geomagnetic quiet day variations at Indian Observatories.

Hence it is appropriate to take the daily range of the solar quiet day hourly mean values of declination (D), horizontal (H) and vertical (Z) component of the earth's magnetic field with the available common data for the years 1995, 1996 and 1997 namely Sq (D), Sq (H), Sq (Z) on all international quiet days. The results agree with the result of Srivastava et. al [75] using 1995 data. The results from the analytic technique of Fuzzy-cluster analysis are highly encouraging for application of this technique to the future analysis of geomagnetic data.

From 1995 to 1997 there were 180 international quiet days. Daily ranges the difference between daily maximum and daily minimum on individual days, are calculated and monthly mean values of the ranges are listed in table 6.1. Seasonal variations for the D season (December solstice) comprising the months Jan, Feb, Nov and Dec; E season (Equinoxial) comprising the months Mar, Apr, Sep and Oct; and J season (June solstice) comprising the months May, Jun, Jul and Aug are found and listed in table 6.2. All the above 5 stations' westerly declination in minutes of arc has been converted to variations in nT for uniformity. Seasonal variations for the years 1995, 1996 and 1997 are plotted in figures 6.1, 6.2 and 6.3.

6.2 Concept of Fuzzy Clustering

The method of fuzzy clustering is based on a fuzzy equivalence relation Klir and Yuvan [34]. An equivalence relation is a relation defined on a set, which is reflexive, symmetric and transitive, whereas a fuzzy equivalence relation is a relation defined on a set, which is reflexive, symmetric, and max-min transitive. Zadeh [89] pointed out that, like an ordinary equivalence relation, a fuzzy equivalence relation also induces a partition in each of its α – cuts. The fuzzy clustering problem can thus be viewed as the problem of identifying an appropriate fuzzy compatibility relation in terms of an appropriate distance function applied to given data (Klir and Folger [35]). Then a meaningful fuzzy equivalence relation is defined on the transitive closure of the fuzzy compatibility relation (Anderberg [5]).

6.3 Method of fuzzy clustering using fuzzy compatibility relation

Suppose S is a set consisting of n data items. Let R be the set of all real numbers. Let p be a natural number. Suppose each data item in S is a p-tuple in R^p. Consider any two points X_i X_k in S with
Let a fuzzy compatibility relation R on S be defined in terms of an appropriate distance function of the Minkowski class by the formula

$$R(x_i, x_k) = 1 - \delta \left[\sum (x_{ij} - x_{kj})^q \right]^{1/q}$$

(6.3)

For all pairs $(x_i, x_k) \in S$ where q is a positive real number and δ is a constant that ensures that $R(x_i, x_k) \in [0, 1]$. The quantity δ is the inverse value of the largest distance in S.

In general, R defined by equation (6.3) is a fuzzy compatibility relation and it need not be a fuzzy equivalence relation. An algorithm is required to determine the transitive closure of R. Since R is a compatibility relation, one can use the following result in the formulation of an algorithm.

6.4 Result on max-min transitive closure

Let S be a finite universal set. Let the number of elements in S be n. Let R be a fuzzy compatibility relation on S. Then the max-min transitive closure of R is the relation $R^{(n-1)}$.

6.5 Transitive closure algorithm

Let R be a square matrix of order k obtained from the given data matrix by employing equation (6.3).

Take $R^{(2)} = R \circ R$

(6.4)

where an element of $R \circ R$ is $\max-min \ (X_{ij}, X_{is})$ with j varying from 1 to k where X_{is} is an element in the r^{th} row and s^{th} column of the matrix $R^{(2)}$.

Similarly,

$$R^{(4)} = R^{(2)} \circ R^{(2)}$$

(6.5)

$$\ldots$$

$$\ldots$$

$$R^{(2k)} = R^{(2k-1)} \circ R^{(2k-1)}$$

(6.6)
This process is continued until no new relation is produced. Thus, the Max-Min transitive closure of \(R \) is the relation \(R^{(n-k)} \) which is denoted by \(R^T \). Finally this relation induces partitions called \(\alpha \)-cuts in different intervals. The partitions agree with the visual perception of geometric clusters in the data.

6.6 Application of fuzzy clustering to Geomagnetic Sq variations

The monthly mean values of the Sq range for the D, H, Z components for the 36 months from table 6.1 are considered. From this table a distance matrix is obtained with the formula

\[
\text{Distance} = [(x_{11} - x_{12})^2 + (x_{21} - x_{22})^2 + \cdots + (x_{n1} - x_{n2})^2]^{1/2}
\]

for Euclidean distance. It is given as the distance matrix for each component.

The declination (D) component will be used to explain the analysis and is applicable to horizontal (H) and vertical (Z) components.

The following abbreviations are employed:

Alibag: ALB,
Hyderabad: HYD,
Nagpur: NAG,
Pondicherry: PON,
Visakhapatnam: VIZ

Euclidean distance matrix for declination component D is obtained as follows:

<table>
<thead>
<tr>
<th></th>
<th>ALB</th>
<th>HYD</th>
<th>NAG</th>
<th>PON</th>
<th>VIZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALB</td>
<td>0</td>
<td>16.97</td>
<td>23.98</td>
<td>31.03</td>
<td>30.397</td>
</tr>
<tr>
<td>HYD</td>
<td>16.97</td>
<td>0</td>
<td>17.17</td>
<td>29.65</td>
<td>18.38</td>
</tr>
<tr>
<td>NAG</td>
<td>23.98</td>
<td>17.17</td>
<td>0</td>
<td>25.14</td>
<td>26.32</td>
</tr>
<tr>
<td>PON</td>
<td>31.03</td>
<td>29.65</td>
<td>25.14</td>
<td>0</td>
<td>42.77</td>
</tr>
<tr>
<td>VIZ</td>
<td>30.397</td>
<td>18.38</td>
<td>26.32</td>
<td>42.77</td>
<td>0</td>
</tr>
</tbody>
</table>

Relational matrix \(R \) arising from the Euclidean distance equation for the element D is calculated as follows:

\[
R = \begin{pmatrix}
1 & 0.60323 & 0.43933 & 0.27449 & 0.28929 \\
0.60323 & 1 & 0.59855 & 0.30676 & 0.57026 \\
0.43933 & 0.59855 & 1 & 0.41220 & 0.38462 \\
0.27449 & 0.30676 & 0.41220 & 1 & 0 \\
0.28929 & 0.57026 & 0.38462 & 0 & 1
\end{pmatrix}
\]
Next $R^{(2)}$ is obtained using the transitive closure algorithm described above. The result is given below:

\[
\begin{array}{cccccc}
\text{ALB} & \text{HYD} & \text{NAG} & \text{PON} & \text{VIZ} \\
\text{ALB} & 1 & 0.60323 & 0.59855 & 0.41220 & 0.57026 \\
\text{HYD} & 0.60323 & 1 & 0.59855 & 0.41220 & 0.57026 \\
\text{R}^{(2)} = \text{RoR} = \text{NAG} & 0.59855 & 0.59855 & 1 & 0.41220 & 0.57026 \\
\text{PON} & 0.41220 & 0.41220 & 0.41220 & 1 & 0.38462 \\
\text{VIZ} & 0.57026 & 0.57026 & 0.57026 & 0.38462 & 1 \\
\end{array}
\]

Using the transitive algorithm, $R^{(4)}$ is obtained as follows:

\[
\begin{array}{cccccc}
\text{ALB} & \text{HYD} & \text{NAG} & \text{PON} & \text{VIZ} \\
\text{ALB} & 1 & 0.60323 & 0.59885 & 0.41220 & 0.57026 \\
\text{HYD} & 0.60323 & 1 & 0.59855 & 0.41220 & 0.57026 \\
\text{R}^{(4)} = \text{R}^{(2)} \circ \text{R}^{(2)} = \text{NAG} & 0.59855 & 0.59855 & 1 & 0.41220 & 0.57026 \\
\text{PON} & 0.41220 & 0.41220 & 0.41220 & 1 & 0.41220 \\
\text{VIZ} & 0.57026 & 0.57026 & 0.57026 & 0.41220 & 1 \\
\end{array}
\]

Again using the transitive algorithm, $R^{(8)}$ is obtained as follows:

\[
\begin{array}{cccccc}
\text{ALB} & \text{HYD} & \text{NAG} & \text{PON} & \text{VIZ} \\
\text{ALB} & 1 & 0.60323 & 0.59885 & 0.41220 & 0.57026 \\
\text{HYD} & 0.60323 & 1 & 0.59855 & 0.41220 & 0.57026 \\
\text{R}^{(8)} = \text{R}^{(4)} \circ \text{R}^{(4)} = \text{NAG} & 0.59855 & 0.59855 & 1 & 0.41220 & 0.57026 \\
\text{PON} & 0.41220 & 0.41220 & 0.41220 & 1 & 0.41220 \\
\text{VIZ} & 0.57026 & 0.57026 & 0.57026 & 0.41220 & 1 \\
\end{array}
\]

Next it is observed that

\[
R^{(8)} = R^{(4)} \circ R^{(4)} = R^{(4)}
\]
and $R^{(16)} = R^{(8)} \circ R^{(8)}$

$= R^{(4)} \circ R^{(4)}$

$= R^{(4)}$, etc.

Consequently no new matrix is obtained after $R^{(8)}$. This indicates that the stopping condition for the algorithm has been reached. As a result, the final matrix R_T is taken as $R^{(8)}$. The transitive closure of R is taken as $R^{(8)}$.

6.7 Dendogram

The result of single linkage clustering (Maskay [47]) is displayed graphically in the form of a diagram called dendogram (Eversst [23]). The term "dendogram" is used in numerical taxonomy for any graphical drawing or diagram giving a tree like description of a taxonomic system. More generally, Calinski [16] describes a dendogram as a two-dimensional diagram representing a tree of relationships, whatever their nature. The representation of a taxonomic system by a dendogram is particularly suitable in connection with a cluster analysis to investigate the structure of the corresponding operational taxonomic units; that is, entities or individuals considered as the lowest-ranking taxa within the system. From the above table $R^{(8)}$, it is observed that the transitive closure leads to the cuts in the interval [0,1] at 0.60323, 0.59855, 0.57026, 0.41220 as shown below.

α -cuts:

```
0-- .... O--- .. ---O---O-----O----O-- ... ----O-- .... ----O--------
0.60323 0.59855 0.57026 0.41220 1
```

Thus the following α - cuts are formed by R_T

- $\alpha \in (0.60323, 1]$: \{(ALB), (HYD), (NAG), (PON), (VIZ)}
- $\alpha \in (0.59855, 0.60323]$: \{(HYD, ALB), NAG, PON, VIZ}.
- $\alpha \in (0.57026, 0.59855]$: \{(HYD, NAG), (NAG, ALB), (ALB, NAG)}
 : \{(HYD, ALB, NAG), (PON), (VIZ)}
- $\alpha \in (0.41220, 0.57026]$: \{(ALB, VIZ), (HYD, VIZ), (NAG, VIZ), (VIZ, ALB)}
 : \{(HYD, ALB, NAG, VIZ), PON)

The α - cuts are considered one by one by starting from the right hand side and moving in the left direction. The first α - cut to be considered is (0.60323, 1]
The entries in the R^k which are greater than 0.60323 and less than or equal to 1 are 1, 1, 1, 1, 1. These values correspond to the pairs ALB-ALB, HYD-HYD, NAG-NAG, PON-PON, and VIZ-VIZ. Thus corresponding to the first α - cut (0.60323, 1], each one of the five stations namely ALB, HYD, NAG, PON and VIZ form a distinct partition.

The next α - cut has to be considered by moving from the right end of the interval to the left. Thus, one has to consider the α - cut (0.59855, 0.60323]. The entries, which are greater than 0.59855 and less than or equal to 0.60323 correspond to the pairs HYD-ALB. Consequently it is concluded that the pair HYD-ALB forms a cluster corresponding to the α - cut (0.59855, 0.60323]

Next, the α - cut (0.57026, 0.59855] is taken up for consideration. The pairs associated with this α - cut are HYD-NAG, NAG-ALB, and ALB-NAG. Therefore HYD, ALB and NAG form a cluster and PON and VIZ are isolated.

Next, the α - cut (0.41220, 0.57026] is taken up for consideration. In this chapter VIZ joins with the last cluster and PON is isolated.

The first cluster in the dendogram for the declination component D (fig.6.4) indicates that HYD and ALB have similar characteristics in terms of its variations in the declination component. It is also seen from this figure that the variations in the declination component for PON stand apart from the cluster.

By applying the same procedures, the R_τ, which induces the following partition for its α - cuts for horizontal component H and vertical component Z are found. The details are shown for component D and are similar for the H and Z components.

For the horizontal H component the R_τ induces the following four partitions for its α - cuts.

\[
\begin{align*}
\alpha \in (0.79247, 1] &: \{(ALB), (HYD), (PON), (NAG), (VIZ)\} \\
\alpha \in (0.69268, 0.79247] &: \{(VIZ, HYD), ALB, PON, NAG, VIZ\} \\
\alpha \in (0.53951, 0.69268] &: \{(ALB, HYD), (ALB, VIZ)\} \\
& \quad \ quad
For the vertical Z component the \(\tau \) induces the following four partitions for its \(\alpha \) - cuts.

\[
\begin{align*}
\alpha & \in (0.73252, 1] \quad : \quad \{(ALB), (HYD), (NAG), (VIZ) \} \\
\alpha & \in (0.68198, 0.73252] \quad : \quad \{(NAG, HYD), ALB, PON, VIZ}\] \\
\alpha & \in (0.39923, 0.68198] \quad : \quad \{(HYD, NAG, VIZ), ALB, PON\} \\
\alpha & \in (0.17740, 0.39923] \quad : \quad \{(HYD, NAG, VIZ), (ALB, PON)\}
\end{align*}
\]

The dendrogram for the vertical component-Z (fig 6.6) indicates that the variations in Z for
the stations NAG and HYD, central inland stations form a cluster and VIZ joins the first cluster
and ALB and PON stand apart the first cluster and form a different cluster.

6.8 Findings of the study:

Seasonal variations of D, H and Z in table 3 are plotted (fig. 6.1, 6.2 and 6.3) for all the
stations for the years 1995 to 1997 and they are compared. Fuzzy clustering has been achieved
with continuous data from the 36 months listed in table 6.1 for each component separately, to
study the overall pattern and proximity of one observatory to the other. Seasonal variation of the
individual observatories forms the same pattern for all 3 years.

An examination of the figures 6.1, 6.2, and 6.3 - in comparison with the respective
dendograms (figures 6.4, 6.5 and 6.6) show the following.

(i). Of the Sq (D) ranges observed among the 5 stations, ALB and HYD show the same range
of variations, NAG and VIZ show marginally enhanced variations and PON stands
apart. The dendogram of D agrees with this result.

(ii). The Sq (H) range values at ALB is less compared to HYD but no definite trend emerges at
VIZ. The Sq (H) range for VIZ is comparable to HYD. The results of Srivastava et. al. [75]
agrees with this present study. NAG and PON values are high compared to the other three
places in all seasons. This result has also been established with the Fuzzy clustering
technique. NAG and PON form a separate cluster VIZ, HYD and ALB form a separate
cluster which results in the dendogram for H variations.

(iii). Sq (Z) range values at ALB and PON are high compared to HYD for all three seasons. Sq
(Z) values at VIZ are less compared to HYD except in summer months. NAG and HYD,
which are far away from either of the coasts, are nearer to each other in variations of the vertical component. The dendogram for Z variations confirms the result.

It is necessary to recollect the findings of Srivastava et. al [75] that vast deposits of limestone have been discovered in the Bay of Bengal off Visakhapatnam and that a relatively deep resistive body may not allow the Sq induced currents in the seawater to concentrate near the Visakhapatnam coast. In the case of Alibag on the west coast, however, such induced Sq currents in the Arabian sea do concentrate along the coast line and the continental margins give rise to an enhanced daily range in Z and reduced daily ranges in H and D as compared to those at the Hyderabad station.

Although PON and VIZ are in the same coastal region only ALB and PON form the same pattern. An examination of the graphical plots and Dendogram for Z reveal this fact.

6.9 Concluding remarks

In fuzzy c-means method described in chapter 5, the desired number of clusters must be specified. This is generally a disadvantage whenever the clustering problem does not specify any desired number of clusters. In such problems, the number of clusters should reflect, in a natural way, the structure of the given data. Methods based on fuzzy equivalence relations work in this way. The fuzzy clustering problem can be viewed as the problem of identifying an appropriate fuzzy equivalence relation on given data. The application of fuzzy concepts for pattern recognition and classification have been used for numerous applications in Astronomy, Meteorology, Geology for planetary exploration, terrestrial geologic feature analysis, cartography and geodesy, surface model fittings, satellite data analysis, artificial intelligence, etc. This technique has been used in this chapter to study the identical pattern of geomagnetic variations at Indian geomagnetic observatories. As a result of this study, it is expected that future usage of this technique may prove to be appropriate for exploring some new results in Geomagnetism.
Table 6.1

Monthly variations for the components D, H and Z for the years 1995, 1996 and 1997 in nT.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>95Jan</td>
<td>22</td>
<td>26</td>
<td>29</td>
<td>28</td>
<td>28</td>
<td>20</td>
<td>23</td>
<td>29</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>15</td>
<td>13</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>Feb</td>
<td>15</td>
<td>17</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>35</td>
<td>37</td>
<td>49</td>
<td>36</td>
<td>34</td>
<td>15</td>
<td>12</td>
<td>11</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>Mar</td>
<td>30</td>
<td>29</td>
<td>34</td>
<td>27</td>
<td>31</td>
<td>49</td>
<td>54</td>
<td>61</td>
<td>69</td>
<td>55</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>Apr</td>
<td>42</td>
<td>45</td>
<td>44</td>
<td>38</td>
<td>50</td>
<td>42</td>
<td>49</td>
<td>54</td>
<td>69</td>
<td>55</td>
<td>32</td>
<td>26</td>
<td>25</td>
<td>35</td>
<td>23</td>
</tr>
<tr>
<td>May</td>
<td>48</td>
<td>50</td>
<td>49</td>
<td>44</td>
<td>53</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>51</td>
<td>39</td>
<td>30</td>
<td>22</td>
<td>18</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>Jun</td>
<td>59</td>
<td>62</td>
<td>61</td>
<td>51</td>
<td>63</td>
<td>44</td>
<td>49</td>
<td>57</td>
<td>50</td>
<td>45</td>
<td>37</td>
<td>20</td>
<td>21</td>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>Jul</td>
<td>51</td>
<td>53</td>
<td>54</td>
<td>43</td>
<td>61</td>
<td>46</td>
<td>50</td>
<td>56</td>
<td>56</td>
<td>45</td>
<td>33</td>
<td>26</td>
<td>24</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Aug</td>
<td>54</td>
<td>50</td>
<td>48</td>
<td>43</td>
<td>52</td>
<td>41</td>
<td>43</td>
<td>54</td>
<td>51</td>
<td>41</td>
<td>31</td>
<td>29</td>
<td>25</td>
<td>32</td>
<td>21</td>
</tr>
<tr>
<td>Sep</td>
<td>51</td>
<td>52</td>
<td>49</td>
<td>47</td>
<td>54</td>
<td>32</td>
<td>36</td>
<td>46</td>
<td>46</td>
<td>33</td>
<td>32</td>
<td>26</td>
<td>21</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>Oct</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>21</td>
<td>24</td>
<td>38</td>
<td>42</td>
<td>51</td>
<td>53</td>
<td>42</td>
<td>18</td>
<td>18</td>
<td>11</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>Nov</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>17</td>
<td>20</td>
<td>35</td>
<td>39</td>
<td>49</td>
<td>46</td>
<td>41</td>
<td>16</td>
<td>15</td>
<td>10</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>Dec</td>
<td>17</td>
<td>24</td>
<td>26</td>
<td>22</td>
<td>26</td>
<td>25</td>
<td>29</td>
<td>38</td>
<td>31</td>
<td>29</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>96Jan</td>
<td>22</td>
<td>18</td>
<td>27</td>
<td>24</td>
<td>24</td>
<td>31</td>
<td>33</td>
<td>40</td>
<td>43</td>
<td>33</td>
<td>23</td>
<td>17</td>
<td>23</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>Feb</td>
<td>23</td>
<td>21</td>
<td>27</td>
<td>29</td>
<td>21</td>
<td>40</td>
<td>44</td>
<td>51</td>
<td>50</td>
<td>45</td>
<td>16</td>
<td>11</td>
<td>13</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>Mar</td>
<td>15</td>
<td>16</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>38</td>
<td>41</td>
<td>50</td>
<td>48</td>
<td>43</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>Apr</td>
<td>42</td>
<td>40</td>
<td>41</td>
<td>41</td>
<td>51</td>
<td>42</td>
<td>52</td>
<td>56</td>
<td>65</td>
<td>51</td>
<td>30</td>
<td>21</td>
<td>23</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>May</td>
<td>45</td>
<td>41</td>
<td>43</td>
<td>41</td>
<td>51</td>
<td>42</td>
<td>50</td>
<td>55</td>
<td>53</td>
<td>44</td>
<td>29</td>
<td>14</td>
<td>20</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>Jun</td>
<td>47</td>
<td>39</td>
<td>43</td>
<td>38</td>
<td>48</td>
<td>42</td>
<td>46</td>
<td>55</td>
<td>45</td>
<td>42</td>
<td>27</td>
<td>14</td>
<td>17</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>Jul</td>
<td>33</td>
<td>31</td>
<td>33</td>
<td>30</td>
<td>39</td>
<td>29</td>
<td>31</td>
<td>40</td>
<td>39</td>
<td>28</td>
<td>26</td>
<td>19</td>
<td>18</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>Aug</td>
<td>53</td>
<td>41</td>
<td>44</td>
<td>44</td>
<td>49</td>
<td>25</td>
<td>28</td>
<td>42</td>
<td>40</td>
<td>25</td>
<td>31</td>
<td>21</td>
<td>21</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>Sep</td>
<td>51</td>
<td>48</td>
<td>51</td>
<td>52</td>
<td>57</td>
<td>38</td>
<td>46</td>
<td>55</td>
<td>59</td>
<td>41</td>
<td>35</td>
<td>24</td>
<td>22</td>
<td>28</td>
<td>19</td>
</tr>
<tr>
<td>Oct</td>
<td>32</td>
<td>29</td>
<td>31</td>
<td>28</td>
<td>33</td>
<td>40</td>
<td>47</td>
<td>52</td>
<td>54</td>
<td>46</td>
<td>23</td>
<td>13</td>
<td>19</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Nov</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>15</td>
<td>42</td>
<td>46</td>
<td>55</td>
<td>48</td>
<td>43</td>
<td>15</td>
<td>7</td>
<td>8</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>Dec</td>
<td>17</td>
<td>15</td>
<td>20</td>
<td>19</td>
<td>17</td>
<td>28</td>
<td>30</td>
<td>40</td>
<td>35</td>
<td>29</td>
<td>12</td>
<td>9</td>
<td>9</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>97Jan</td>
<td>24</td>
<td>22</td>
<td>27</td>
<td>23</td>
<td>26</td>
<td>25</td>
<td>27</td>
<td>38</td>
<td>34</td>
<td>25</td>
<td>23</td>
<td>15</td>
<td>15</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>Feb</td>
<td>19</td>
<td>18</td>
<td>27</td>
<td>23</td>
<td>25</td>
<td>36</td>
<td>39</td>
<td>47</td>
<td>43</td>
<td>37</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Mar</td>
<td>32</td>
<td>26</td>
<td>32</td>
<td>26</td>
<td>30</td>
<td>47</td>
<td>52</td>
<td>58</td>
<td>58</td>
<td>50</td>
<td>22</td>
<td>14</td>
<td>15</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>Apr</td>
<td>37</td>
<td>36</td>
<td>39</td>
<td>36</td>
<td>44</td>
<td>32</td>
<td>37</td>
<td>45</td>
<td>51</td>
<td>35</td>
<td>23</td>
<td>19</td>
<td>17</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>May</td>
<td>38</td>
<td>34</td>
<td>38</td>
<td>34</td>
<td>39</td>
<td>35</td>
<td>38</td>
<td>47</td>
<td>47</td>
<td>36</td>
<td>37</td>
<td>13</td>
<td>13</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td>Jun</td>
<td>38</td>
<td>37</td>
<td>40</td>
<td>34</td>
<td>45</td>
<td>39</td>
<td>43</td>
<td>50</td>
<td>49</td>
<td>43</td>
<td>26</td>
<td>17</td>
<td>19</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>Jul</td>
<td>38</td>
<td>36</td>
<td>40</td>
<td>35</td>
<td>36</td>
<td>39</td>
<td>41</td>
<td>51</td>
<td>40</td>
<td>39</td>
<td>22</td>
<td>9</td>
<td>11</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>Aug</td>
<td>45</td>
<td>44</td>
<td>46</td>
<td>46</td>
<td>49</td>
<td>40</td>
<td>45</td>
<td>55</td>
<td>48</td>
<td>40</td>
<td>30</td>
<td>18</td>
<td>19</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>Sep</td>
<td>45</td>
<td>46</td>
<td>50</td>
<td>48</td>
<td>56</td>
<td>39</td>
<td>46</td>
<td>54</td>
<td>60</td>
<td>44</td>
<td>36</td>
<td>22</td>
<td>22</td>
<td>37</td>
<td>22</td>
</tr>
<tr>
<td>Oct</td>
<td>26</td>
<td>30</td>
<td>33</td>
<td>29</td>
<td>39</td>
<td>34</td>
<td>41</td>
<td>46</td>
<td>62</td>
<td>42</td>
<td>31</td>
<td>23</td>
<td>21</td>
<td>42</td>
<td>23</td>
</tr>
<tr>
<td>Nov</td>
<td>18</td>
<td>18</td>
<td>22</td>
<td>19</td>
<td>20</td>
<td>33</td>
<td>43</td>
<td>46</td>
<td>45</td>
<td>39</td>
<td>15</td>
<td>11</td>
<td>13</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>Dec</td>
<td>19</td>
<td>22</td>
<td>24</td>
<td>25</td>
<td>29</td>
<td>21</td>
<td>23</td>
<td>32</td>
<td>32</td>
<td>23</td>
<td>24</td>
<td>16</td>
<td>19</td>
<td>23</td>
<td>16</td>
</tr>
</tbody>
</table>

88
Table 6.2

Seasonal Variations for D, H and Z components in nT:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>96D</td>
<td>17.5</td>
<td>21.25</td>
<td>23.5</td>
<td>21.5</td>
<td>23</td>
<td>28.75</td>
<td>32</td>
<td>41.25</td>
<td>37</td>
<td>29.25</td>
<td>18</td>
<td>14</td>
<td>12</td>
<td>24</td>
<td>15.5</td>
</tr>
<tr>
<td>96E</td>
<td>36.25</td>
<td>37</td>
<td>37.5</td>
<td>33.25</td>
<td>39.75</td>
<td>40.25</td>
<td>45.25</td>
<td>53</td>
<td>59.25</td>
<td>46.25</td>
<td>26</td>
<td>22.75</td>
<td>19.25</td>
<td>31</td>
<td>18.75</td>
</tr>
<tr>
<td>96J</td>
<td>53</td>
<td>53.75</td>
<td>53</td>
<td>45.25</td>
<td>57.25</td>
<td>41.75</td>
<td>46</td>
<td>53.75</td>
<td>52</td>
<td>42.5</td>
<td>32.75</td>
<td>24.25</td>
<td>22</td>
<td>28.25</td>
<td>16.25</td>
</tr>
<tr>
<td>97D</td>
<td>19.25</td>
<td>19.75</td>
<td>22.5</td>
<td>22</td>
<td>19.25</td>
<td>35.25</td>
<td>38.25</td>
<td>46.5</td>
<td>44</td>
<td>37.5</td>
<td>16.5</td>
<td>11</td>
<td>13.25</td>
<td>21</td>
<td>14.5</td>
</tr>
<tr>
<td>97E</td>
<td>35</td>
<td>43.75</td>
<td>36</td>
<td>35.5</td>
<td>40.5</td>
<td>39.5</td>
<td>46.5</td>
<td>53.25</td>
<td>56.5</td>
<td>45.25</td>
<td>25.75</td>
<td>17.25</td>
<td>19</td>
<td>25.75</td>
<td>17.5</td>
</tr>
<tr>
<td>97J</td>
<td>44.5</td>
<td>43.75</td>
<td>40.75</td>
<td>38.25</td>
<td>46.75</td>
<td>34.5</td>
<td>38.75</td>
<td>48</td>
<td>44.25</td>
<td>34.75</td>
<td>28.25</td>
<td>17</td>
<td>19</td>
<td>24.25</td>
<td>15.25</td>
</tr>
</tbody>
</table>

89
Figure 6.1 Seasonal variations of the declination D component during D, E, J months

Seasonal variation of D during D,E,J months in 1995

Seasonal Variations of D during D,E,J months in 1996

Seasonal variations of D during D,E,J months in 1997
Figure 6.2 Seasonal variations of the horizontal H component during D, E, J months.
Figure 6.3 Seasonal variations of the vertical Z component during D, E, J months

Seasonal variations of Z during D, E, J months in 1995

Seasonal variations of Z during D, E, J months in 1996

Seasonal variations of Z during D, E, J months in 1997
Figure 6.4 Dendogram for Declination D component

Figure 6.5 Dendogram for Horizontal H Component

Figure 6.6 Dendogram for vertical Z Component