TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO</th>
<th>TITLE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Overview</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Macro-scale Batteries</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3 Micro-scale Batteries</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.4 Micro-fuel Cells</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.5 Biochemical basis</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.6 Applications of microbial fuel cell technology</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1.7 Waste water treatment</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1.8 Powering underwater monitoring devices</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1.9 Power supply to remote sensors</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1.10 BOD sensing</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1.11 Hydrogen production</td>
<td>9</td>
</tr>
<tr>
<td>1.12 Ultra capacitors</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>1.13 Capacitance distribution</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1.14 Potential distribution</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1.15 Ultra-cap diagram courtesy of NREL</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1.16 Ultra-cap advantage</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>1.17 Measuring capacitance</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>1.18 Ultra caps and batteries as partners</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>1.19 Ultra-capacitors</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>1.20 Power density versus energy density</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1.21 Radioactive power sources</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>1.22 Fuels</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>1.23 Life span</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>1.24 Efficiency</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>1.25 Thermoelectric effect</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>1.26 Safety</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>1.27 Nuclear fission</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>1.28 RTG for interstellar probes</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>1.29 Nuclear power in space</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1.30 Nuclear power debate</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>1.31 Comparison with renewable energy</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>1.32 Store up the energy on the node (battery)</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>1.33 Energy Processors use Maximum Peak Power Tracking</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>1.34 Energy Harvesting vs. Non rechargeable Batteries</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>1.35 Allocate power to the node (wire)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>2.1 Wireless Sensor</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>2.2 Wireless Sensor Networks</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Remote Data Collection</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>2.2.2 Scavenging energy</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>2.2.3 Energy Scavenging Techniques</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>2.2.4 RF Energy</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>2.3 Characteristics</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>2.4 wireless Sensor Node</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>2.5 Components</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>2.5.1 Controller</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>2.6 Transceiver</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>2.6.1</td>
<td>External memory</td>
<td>61</td>
</tr>
<tr>
<td>2.7</td>
<td>Power source</td>
<td>61</td>
</tr>
<tr>
<td>2.8</td>
<td>Sensors</td>
<td>62</td>
</tr>
<tr>
<td>2.9</td>
<td>Power In Wireless Node</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>METHODOLOGY</td>
<td>68</td>
</tr>
<tr>
<td>3.1</td>
<td>Solar Power Energy Reservoirs</td>
<td>68</td>
</tr>
<tr>
<td>3.2</td>
<td>Motivation of the Research</td>
<td>72</td>
</tr>
<tr>
<td>3.3</td>
<td>Automatic Battery Switching System (ABSS)</td>
<td>73</td>
</tr>
<tr>
<td>3.4</td>
<td>Practical Considerations of WSN Data Acquisition</td>
<td>75</td>
</tr>
<tr>
<td>3.5</td>
<td>Lab VIEW Data Acquisition Results</td>
<td>76</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Problem Definition</td>
<td>80</td>
</tr>
<tr>
<td>3.6</td>
<td>Neuro-Fuzzy controller</td>
<td>81</td>
</tr>
<tr>
<td>3.7</td>
<td>Lab VIEW Neural Network:</td>
<td>86</td>
</tr>
<tr>
<td>3.8</td>
<td>Solar Harvesting Module Design</td>
<td>91</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Solar cell characteristics</td>
<td>91</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Energy storage technologies</td>
<td>92</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Harvesting circuit design</td>
<td>94</td>
</tr>
<tr>
<td>3.9</td>
<td>Power Electronics</td>
<td>95</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>3.9.1 DC-DC converters</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>3.9.2 Single Ended Primary Inductor Converter</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>3.9.3 Disadvantages of SEPIC</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>3.9.4 Operation of SEPIC</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>3.9.5 Switches</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>3.9.6 Continuous and Discontinuous Mode of operation</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>3.9.7 Operating principles of the SEPIC</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3.9.8 Controllers</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>3.9.9 Energy measurement</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>3.10 Harvesting Aware Power Management</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>3.11 Heliomote Design And Evaluation</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>3.11.1 Overview</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>3.11.2 Design choices and description</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>3.11.3 Software interface</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>3.11.4 PCB design considerations</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>4 RESULT AND DISCUSSIONS</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>4.1 General</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>4.2 Lab view Result Of Data Acquisition</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>4.3</td>
<td>Batteries Voltage Sensor Node</td>
<td>116</td>
</tr>
<tr>
<td>4.4</td>
<td>Temperature Of Sensor Node</td>
<td>120</td>
</tr>
<tr>
<td>4.5</td>
<td>Solar Panel Current Analysis</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>4.5.1 Theory of I-V Characterization</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>4.5.2 Short Circuit Current (ISC)</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>4.5.3 Open Circuit Voltage (VOC)</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>4.5.4 Maximum Power (PMAX), Current at PMAX (IMP), Voltage at PMAX (VMP)</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>4.5.5 Fill Factor (FF)</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>4.5.6 Efficiency (η)</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>4.5.7 Shunt Resistance (RSH) and Series Resistance (RS)</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>4.5.8 Temperature Measurement Considerations</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>4.5.9 I-V Curves for Modules</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>4.5.10 Toolkit for I-V Analysis with Lab VIEW</td>
<td>130</td>
</tr>
<tr>
<td>5</td>
<td>SUMMARY AND CONCLUSIONS</td>
<td>131</td>
</tr>
<tr>
<td>5.1</td>
<td>SUMMARY</td>
<td>131</td>
</tr>
<tr>
<td>5.2</td>
<td>Conclusion of the Proposed System:</td>
<td>132</td>
</tr>
<tr>
<td>6</td>
<td>REFERENCES</td>
<td>137</td>
</tr>
</tbody>
</table>