TABLE OF CONTENTS

Chapter 1: Introduction

1.1 Dehydration
1.1.1 Physiological and Biochemical Responses to Dehydration Stress
1.1.1.1 Osmotic Adjustment and Ion Homeostasis
1.1.1.2 Degradation and Repair Pathways
1.1.1.3 Detoxification
1.1.1.4 Protective Pathways and Protection of Cellular Structure
1.1.1.5 Metabolism
1.2 Regulation of Gene Expression During Dehydration
1.2.1 Attributes of Dehydration Stress and the Multitude of Signal Perception Modes
1.2.2 MAPkinase Pathways
1.2.3 SNF-1-Like Kinases are Involved in Osmotic Stress Signalling
1.3 Transcriptional Regulatory Networks in Response to Abiotic Stresses
1.3.1 DREB1/CBF and DREB2 Regulons
1.3.1.1 DREB1/CBF Regulons
1.3.1.2 DREB2 Regulon in Response to Osmotic Stress
1.3.2 AREB/ABF Regulon
1.3.2.1 AREB and Coupling Elements for ABA-Mediated Responses
1.3.2.2 AREB/ABF Regulon in Response to ABA
1.3.3 NAC Regulon for Dehydration, High Salinity and Cold Stress
1.4 Research Strategies to Study Dehydration Responsiveness
1.4.1 Tolerant Systems
1.4.2 Genetic Analysis of Drought and Cold-Stress and ABA Signaling Pathways
1.4.3 Crop Plants
1.5 Proteomics
1.5.1 Protein Properties
1.5.2 Sample Preparation
1.5.3 Solubilization of Proteins
1.5.4 Separation of Proteins
1.5.4.1 One-Dimensional Gel Electrophoresis (1-DE)
1.5.4.2 Two-Dimensional Gel Electrophoresis (2-DE)
1.5.4.3 Limitations and Solutions to Overcome 2-DE Limitations
1.5.4.3.1 Membrane and Hydrophobic Proteins
1.5.4.3.2 Basic Proteins
1.5.4.3.3 Prefractionation and Enrichment Techniques
1.5.4.3.4 Subcellular Fractionation
1.5.4.3.5 Blue-Native PAGE
1.5.5 Protein Visualization
1.5.7 Protein Identification
 1.5.7.1 Edman Sequencing
 1.5.7.2 Mass Spectrometry (MS)
 1.5.7.3 Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry (MALDI-TOF-MS)
 1.5.7.4 Electrospray Ionization Mass Spectrometry (ESI-MS/MS)
 1.5.7.5 Multi-Dimensional Protein Identification Technology
 1.5.8 Differential-Display Proteomics
 1.5.9 Bioinformatics Tools
 1.6 Rice
 1.6.1 Where is Rice Proteomics Today-Facts?
 1.6.2 Rice Subcellular Proteomics
 1.6.2.1 Nuclear Subproteome
 1.7 Abiotic Stress Proteomics
 1.7.1 Dehydration Proteomics
 1.7.2 High Temperature
 1.7.3 Low Temperature
 1.7.4 Salt
 1.7.5 Oxidative stress
 1.8 Rice Proteome Database

Chapter 2: Nuclear Proteome Analysis in Rice

2.1 Introduction
 2.1.1 Genotypic Basis of Drought Tolerance
 2.1.2 Organellar Proteomics
 2.1.2.1 Nucleus
 2.1.2.2 Composition and Architecture of Nucleus
 2.1.2.3 Nuclear Proteomics- Advancement and Prospects
 2.2 Materials and Methods
 2.2.1 Plant Growth, Maintenance, and Dehydration Treatment
 2.2.2 Determination of Dehydration-induced Physiological and Biochemical Changes
 2.2.2.1 Estimation of Relative Water Content (RWC)
 2.2.2.2 Estimation of Free Proline
 2.2.2.3 Estimation of Photosynthetic Pigments and Carotenoid
 2.2.2.4 Determination of Lipid Peroxidation
 2.2.2.5 Electrolyte Leakage Assay
 2.2.3 Isolation of Nuclei
 2.2.4 Nuclear Protein Extraction and Quantification
 2.2.5 1-D Gel Electrophoresis
 2.2.6 Assessment of the Purity of the Nuclear Fractions
2.2.6.1 Microscopy
2.2.6.2 Chlorophyll Assay
2.2.6.3 Protein Blot Analysis
2.2.6.4 Enzyme Assays
2.2.7 2-DE of Nuclear Proteins
2.2.8 In Gel Digestion
2.2.9 Protein Identification
2.2.9.1 MALDI-TOF-TOF-MS
2.2.9.2 LC-ESI-MS/MS
2.3 Result and Discussion
2.3.1 Effect of Dehydration and Screening of Rice Varieties for Dehydration Tolerance
2.3.2 Evaluation of Nuclear Integrity and Purity of the Nuclear Fraction
2.3.3 1-D Gel Electrophoresis and Protein Identification
2.3.4 2-D Gel Electrophoresis and Protein Identification
2.3.5 Functional Classification of Nuclear Proteins
2.4 Conclusion

Chapter 3: Dehydration-Responsive Nuclear Proteome

3.1 Introduction
3.2 Materials and Methods
3.2.1 Plant Growth, Maintenance, and Dehydration Treatment
3.2.2 Isolation of Nuclei, Protein Extraction, 2-DE and Data Analysis
3.2.3 Protein Identification and Expression Clustering
3.3 Results and Discussion
3.3.1 Dehydration-induced Changes and 2-DE Analysis
3.3.2 Functional Distribution of Dehydration-responsive Nuclear Proteins
3.3.3 Dynamics of the Dehydration-responsive Nuclear Protein Network
3.3.4 Immunoblot Analysis
3.3.5 Regulatory and Metabolic Networks of Dehydration-responsive Nuclear Proteins
3.3.5.1 Transcriptional Regulators and Chromatin Remodeling
3.3.5.2 Signaling and Gene Regulation
3.3.5.3 Metabolism
3.3.5.4 Cell Defense and Rescue
3.3.5.5 Ribosomal Proteins and Translation
3.3.5.6 Protein Degradation
3.3.5.7 Miscellaneous
3.3.5.8 Proteins of Unknown Functions
3.4 Conclusion
Chapter 4: Comparative Analysis of Rice Nuclear Proteome in Tolerant (Rasi) and Susceptible (IR-64) Varieties under Dehydration

4.1 Introduction
4.2 Materials and Methods
4.2.1 2-DE Analysis, Protein Identification and Expression Clustering
4.3 Results and Discussion
4.3.1 Nuclear Proteome Profile of Susceptible Variety (IR-64)
4.3.2 Functional Distribution of Dehydration-Responsive Nuclear Proteins in Susceptible Variety (IR-64)
4.3.3 Comparative Nuclear Proteome of Tolerant (Rasi) and Susceptible (IR-64) Varieties
4.3.4 Comparative Dehydration-Responsive Nuclear Proteome of Tolerant (Rasi) and Susceptible (IR-64) Varieties
4.3.4.1 Chromatin Remodeling and Transcriptional Regulators
4.3.4.2 Signaling and Gene Regulation
4.3.4.3 Cell Defense and Rescue
4.3.4.4 Metabolism
4.3.4.5 Ribosomal Proteins and Translation
4.3.4.6 Protein Degradation
4.3.4.7 Miscellaneous and Unknown Functions
4.4 Conclusion

Chapter 5: Molecular Cloning of Dehydration-Responsive Genes

5.1 Introduction
5.1.1 Proteasomes: Machines for all Reasons
5.1.2 U-box Proteins as a Family of Ubiquitin Ligases
5.1.3 The WD Repeat: A common Architecture for Diverse Functions
5.1.4 Pre-mRNA Splicing Factor Prp19
5.1.5 Protein Expression Analysis
5.1.5.1 The Expression Systems
5.1.5.2 Fusion Protein Technology
5.2 Materials and Methods
5.2.1 Plant Material and Stress Treatments
5.2.2 RNA Isolation
5.2.3 cDNA Preparation
5.2.4 Subcellular Localization
5.2.4.1 Plant Material
5.2.4.2 GFP Construct
5.2.5 Northern Blotting
5.2.5.1 Pre-hybridization of Membrane
5.2.5.2 Probe Preparation
5.2.5.3 Probe Purification
5.2.5.4 Hybridization Procedure
5.2.5.5 Post Hybridization Washing and Autoradiography
5.2.6 Overexpression of OsNWD
5.2.6.1 OsNWD Cloning in pGEX4T2
5.2.6.2 Expression of OsNWD cDNA by pGEX4T2
5.2.6.3 Purification of Recombinant Protein
5.3 Results and Discussion
5.3.1 Subcellular Localization
5.3.2 In Silico Analysis of OsNWD Encoded Protein Sequence
5.3.3 Multiple Sequence Alignment and Phylogenetic Analysis
5.3.4 OsNWD is Multiple Stress Inducible Gene
5.3.5 Cloning of OsNWD cDNA in pGEX4T2 Expression Vector
5.3.6 Expression of OsNWD Protein
5.3.7 Purification of Fusion Protein
5.4 Conclusion

6.0 Summary 114-115

7.0 Bibliography 116-149

Appendix 150-152