CHAPTER 2

Strongly Regular Gamma - Near Rings

2.1 Introduction

In [35], Mason introduced the notion of strongly regular near-rings. After the appearance of [35], several papers appeared which improved the results and answered some open questions (cf.[36],[41],[43]). In this chapter we will use the notions of 0-prime and completely prime ideals to characterize strongly regular Γ-near rings.

In Section 2.2, we shall prove that if N is arbitrary Γ-near ring then $P_0(N)$ (0-prime radical of N) coincides with the intersection of the 0-prime left ideals of N and $P_c(N)$ (completely prime radical of N) coincides with the intersection of the completely prime left ideals.
of N. If N is zero-symmetric Γ -near ring, then $\mathcal{P}_\nu(N)$ (ν -prime radicals of N, $\nu = 2, 3$) coincides with the ν- prime left ideals of N, for $\nu = 2, 3$. Section 2.3 deals with some basic properties of left weakly Γ - near rings and in Section 2.4 we give some characterization of strongly regular Γ-near rings.

2.2 ν- prime ideals

Definition 2.2.1. If N is a Γ -near ring and I is an ideal of N, then I is said to be $0 - (1-, 2-)$ prime if A, B ideals (left ideals, left Γ-subgroups) of N, $A \Gamma B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$. If $a, b \in N$, $a \Gamma N \Gamma b \subseteq I$ implies $a \in I$ or $b \in I$, then I is called a 3-prime ideal of N.

Definition 2.2.2. If N is a Γ- ring and I is an ideal of N, then I is said to be $0 - (1-, 2-)$ semiprime if for any ideal A (left ideal, left Γ- subgroup) of N, $A \Gamma A \subseteq I$ implies $A \subseteq I$. If $a \in N$, $a \Gamma N \Gamma a \subseteq I$ implies $a \in I$, then I is called a 3-semiprime ideal of N.

Definition 2.2.3. Let N be a Γ -near ring and I be an left ideal of N. We define $I^* = \sum \{ A \triangleleft N/A \subseteq I \}$ that is I^* is the largest two sided ideal contained in I.

Lemma 2.2.4. Let N be a Γ -near ring and I be an left ideal of N.Then $(I : N) = \{m \in N/m \Gamma N \subseteq I \}$ is a two sided ideal of N.
Proof. First we shall prove that \((I : N)\) is a right ideal of \(N\). Let \(x \in (I : N)\) and \(m \in N\). It is enough to prove that \(xam\Gamma N \subseteq I\). Since \(x \in (I : N)\), \(x\Gamma N \subseteq I\). Now \(xam\Gamma N \subseteq x\alpha N \subseteq I \forall \alpha \in \Gamma\). Hence \(xam \in (I : N)\). Thus \((I : N)\) is a right ideal. On the other hand, let \(a, b \in N\) and \(m \in (I : N)\). We shall prove that \(a\alpha (b + m) - a\alpha b \in (I : N)\). It is enough to prove that \([a\alpha (b + m) - a\alpha b] \beta N \subseteq I \forall \alpha, \beta \in \Gamma\).

Now

\[[a\alpha (b + m) - a\alpha b] \beta N = a\alpha (b\beta N + m\beta N) - (a\alpha b) \beta N \]
\[\subseteq a\alpha (b\beta N + I) - a\alpha (b\beta N) \]
\[\subseteq I \quad \forall \alpha, \beta \in \Gamma. \]

Thus \((I : N)\) is a left ideal of \(N\) and consequently \((I : N)\) is a two sided ideal of \(N\).

Lemma 2.2.5. Let \(N\) be a \(\Gamma\)-near ring and \(I\) be a \(0\)-prime left ideal of \(N\). Then \(I^*\) is a \(0\)-prime ideal of \(N\) and \(I^* = (I : N)\).

Proof. Let \(A\) and \(B\) be any two ideals in \(N\) such that \(A, B \not\subseteq I^*\), By the definition, it follows that \(A, B \not\subseteq I\). Since \(I\) is \(0\)-prime, \(A\Gamma B \not\subseteq I\) and hence \(A\Gamma B \not\subseteq I^*\). Thus \(I^*\) is \(0\)-prime.

We now prove that \(I^* = (I : N)\), let \(a \in I^*, m \in N\). Then \(a\alpha m \in I^* \subseteq I \forall \alpha \in \Gamma\), so that \(a \in (I : N)\). Hence \(I^* \subseteq (I : N)\). Now
(I : N) is two sided ideal in N, so that (I : N) \Gamma N \subseteq I. Since I is 0-prime, (I : N) \subseteq I. Hence (I : N) \subseteq I^* and consequently I^* = (I : N).

Theorem 2.2.6. If N be a \(\Gamma\) -near ring, then \(\mathcal{P}_0(N) = \cap\{I/I is a 0-prime left ideal of N\}.

Proof. Let \(Q = \cap\{I/I is a 0-prime left ideal of N\}\). Since every 0-prime two sided ideal of N is a 0-prime left ideal, \(Q \subseteq \mathcal{P}_0(N)\).

Let I be 0-prime left ideal of N. By Lemma 2.2.5, \(I^*\) is a 0-prime ideal of N. Then \(\mathcal{P}_0(N) \subseteq I^* \subseteq I\). Taking intersection as I runs through the 0-prime left ideals of N, \(\mathcal{P}_0(N) \subseteq Q\). Thus \(\mathcal{P}_0(N) = Q\).

Definition 2.2.7. A left ideal \(I\) of a \(\Gamma\) -near ring N is said to be completely prime if for \(a, b \in N\) with \(a \alpha b \in I \forall \alpha \in \Gamma\) and \(b \notin I\) implies that \(a \in I^*\).

Lemma 2.2.8. Let N be a \(\Gamma\) -near ring and I is a completely prime left ideal of N, then I is a 0-prime left ideal of N.

Proof. Suppose I is completely prime ideal of N. We have to prove that I is 0-prime. Let A and B be any two ideals in N such that \(A \Gamma B \subseteq I\). If \(B \nsubseteq I\), then there exists \(b \in B\) such that \(b \notin I\). Since \(b \in B\), \(A \Gamma b \subseteq I\). Again since I is completely prime and \(b \notin I\), \(A \subseteq I^* \subseteq I\), so \(A \subseteq I\). Therefore I is 0-prime.
Lemma 2.2.9. Let N be a Γ-near ring and I a completely prime left ideal of N. Then I^* is a completely prime ideal of N.

Proof. Suppose that I is a completely prime left ideal of N. We shall prove that I^* is a completely prime ideal. Let $a, b \in N$ such that $aob \in I^* \forall \alpha \in \Gamma$ and $b \notin I^*$. Then there exists $m \in N$ such that $b\beta m \notin I$. Since $aob \in I^* \forall \alpha \in \Gamma$, $(a\alpha b)\beta m \in I \forall \alpha \in \Gamma$. Now I is completely prime and $b\beta m \notin I$, it follows that $a \in I^*$. Thus I^* is a completely prime ideal of N.

Theorem 2.2.10. If N is a Γ-near ring, then $P_c(N) = \cap \{I/I$ is a completely prime left ideal of $N\}$.

Proof. It follows from Lemma 2.2.9.

Lemma 2.2.11. Let N be a zero symmetric Γ-near ring. If I is a 2-prime (3-prime) left ideal of N, then I^* is a 2-prime (3-prime) ideal of N.

Proof. Suppose that I is a 2-prime left ideal of N. We shall prove that I^* is a 2-prime ideal of N. Since N is a zero-symmetric, I is 0-prime and hence $I^* = (I : N)$ by Lemma 2.2.5. Let A and B be left Γ-subgroups of N such that $A, B \not\subset I^*$. Then there exist $m, n \in N$ such that $A\alpha m, B\beta n \notin I$ for $\alpha, \beta \in \Gamma$. Since $A\alpha m, B\beta n$ are left Γ-subgroups of N and I is 2-prime, $A\alpha m\Gamma B\beta n \not\subset I$. Hence
2.3. WEAKLY REGULAR Γ -NEAR RINGS

\[A\alpha m \Gamma B \notin I^{*}, \text{ so that } A\alpha B \notin I^{*}. \text{ Consequently } I^{*} \text{ is 2-prime. Now suppose that } I \text{ is a 3-prime left ideal of } N. \text{ Again } I \text{ is a 0-prime and so } I^{*} = (I : N). \text{ To prove that } I^{*} \text{ is 3-prime, let } a, b \notin I^{*}. \text{ Then there exist } m, n \in N \text{ such that } a\alpha m, b\beta n \notin I. \text{ Since } I \text{ is 3-prime, there exist } r \in N \text{ such that } (a\alpha m) \gamma r \delta (b\beta n) \notin I, \text{ i.e., } (a\alpha m) \gamma r \delta b \notin I^{*}. \text{ Hence } I^{*} \text{ is 3-prime.} \]

Using an argument similar to that used in the proof of Theorem 2.2.6, we have the following theorem.

Theorem 2.2.12. Let \(N \) be a zero symmetric \(\Gamma \)-near ring. Then \(\mathcal{P}_{\nu}(N) = \cap \{I/I \text{ is a } \nu \text{-prime left ideal of } N\} \) for \(\nu = 2, 3 \).

2.3 Weakly regular \(\Gamma \)-near rings

In this section we give some properties of weakly regular \(\Gamma \)-near rings.

Definition 2.3.1. A \(\Gamma \)-near ring \(N \) is said to be **left** (respectively **right**) **weakly regular** if \(a \in \langle a \rangle \Gamma a \) (respectively \(a \in a\Gamma \langle a \rangle \)) for all \(a \in N \). \(N \) is said to be **weakly regular** if it is both left and right weakly regular.
2.3. WEAKLY REGULAR Γ-NEAR RINGS

Definition 2.3.2. A Γ-near ring N is said to be left (respectively right) pseudo π-regular if for every $x \in N, \gamma \in \Gamma$, there exists a natural number $n = n(x)$ such that $x^n = \gamma x \gamma \ldots \gamma x \in \langle x \rangle \Gamma x^n$ (respectively, $x^n = \gamma x \gamma \ldots \gamma x \in x^n \Gamma \langle x \rangle$).

Proposition 2.3.3. Let N be a Γ-near ring, then

(i) $a^k \in \langle a \rangle \Gamma a^{k+1}$ for some integer k if and only if the descending chain $\langle a \rangle \Gamma a \supseteq \langle a \rangle \Gamma a^2 \supseteq \ldots$ stabilizes after a finite number of steps;

(ii) If N has the descending chain condition on left Γ subgroups, then N is left pseudo π-regular;

(iii) If N is finite, then N is left and right pseudo π-regular.

Proof. (i) Suppose that $a^k \in \langle a \rangle \Gamma a^{k+1}$.

Now

\begin{align*}
\langle a \rangle \Gamma a^k &\subseteq \langle a \rangle \Gamma (\langle a \rangle \Gamma a^{k+1}) \\
&= (\langle a \rangle \Gamma \langle a \rangle) \Gamma a^{k+1} \\
&\subseteq \langle a \rangle \Gamma a^{k+1} \\
&= \langle a \rangle \Gamma (a \Gamma a^k) \\
&= (\langle a \rangle \Gamma a) \Gamma a^k \\
&\subseteq \langle a \rangle \Gamma a^k.
\end{align*}
Hence $< a > \Gamma a^k = < a > \Gamma a^{k+1}$. Therefore the descending chain $< a > \Gamma a \supseteq < a > \Gamma a^2 \supseteq \cdots$ stabilizes after a finite number of steps.

Conversely, assume that $< a > \Gamma a^m = < a > \Gamma a^{m+1}$, then for each $\alpha \in \Gamma$, $a^{m+1} = a\alpha a^m \in < a > \Gamma a^m$ implies that $a^{m+1} \in < a > \Gamma a^{m+1}$ by assumption. Now

$$a^{m+1} \in < a > \Gamma a^{m+1}$$

$$= (< a > \Gamma a^m) \Gamma a$$

$$= (< a > \Gamma a^{m+1}) \Gamma a$$

$$= < a > \Gamma a^{m+2}.$$

Thus, $a^{m+1} \in < a > \Gamma a^{m+2}$. Take $k = m + 1$. Hence $a^k \in < a > \Gamma a^{k+1}$.

(ii) Clearly $< a > \Gamma a^i$, $\forall i = 1, 2, \cdots$ are left Γ-subgroups and by hypothesis $< a > \Gamma a \supseteq < a > \Gamma a^2 \supseteq \cdots$ stabilizes after a finite number of steps. Hence from (i) for every $a \in N$,

$$a^k \in < a > \Gamma a^{k+1}$$

$$= < a > \Gamma (a \Gamma a^k)$$

$$= (< a > \Gamma a) a^k$$

$$\subseteq < a > \Gamma a^k$$

i.e., $a^k \in < a > \Gamma a^k$.
Hence N is left pseudo $\pi-$ regular.

(iii) If N is finite, then $< a > \Gamma a \supseteq < a > \Gamma a^2 \supseteq \cdots$ stabilizes after a finite number of steps. Therefore by (i) there exists a positive integer k such that $a^k \in < a > \Gamma a^{k+1}$. Since $< a > \Gamma a^{k+1} \subseteq < a > \Gamma a^k$, $a^k \in < a > \Gamma a^k$. Thus N is left pseudo $\pi-$ regular. Similarly N is right pseudo $\pi-$ regular.

Definition 2.3.4. A $\Gamma-$ near ring N is said to be **left quasi duo** if every maximal left ideal is a two sided ideal; and **strict left quasi duo** if every maximal left ideal is closed under right multiplication.

Proposition 2.3.5. If N is a left quasi duo $\Gamma-$near ring with left unity e, and k, n are natural numbers, then $a^n \in < a^k > \Gamma a^n$ if and only if $N = < a^k > + (0 : a^n) \forall a \in N$.

Proof. Let $a^n \in < a^k > \Gamma a^n$ for $a \in N$. Then

$$N\Gamma a^n \subseteq N \Gamma < a^k > \Gamma a^n$$

$$\subseteq < a^k > \Gamma a^n$$

$$\subseteq N\Gamma a^n .$$

Consequently,

$$N\Gamma a^n = < a^k > \Gamma a^n. \quad (*)$$

We claim $N = < a^k > + (0 : a^n) \forall a \in N$. If not, there exists a maximal left ideal M such that $< a^k > + (0; a^n) \subseteq M$. Since N is
2.3. WEAKLY REGULAR Γ-NEAR RINGS

left quasi duo, M is also a two sided ideal. Since $< a^k > \subseteq M$, we have

$$< a^k > \Gamma a^n \subseteq M \Gamma a^n \subseteq N \Gamma a^n = < a^k > \Gamma a^n.$$

Therefore $M \Gamma a^n = < a^k > \Gamma a^n$. Hence, there exists $x \in M$ such that $a^n = e \Gamma a^n = x \Gamma a^n$. From this, we have $(e - x) \Gamma a^n = 0$, and therefore, $(e - x) \in (0 : a^n) \subseteq M$. Hence $e = (e - x) + x \in M$. This is not possible.

Hence $N = < a^k > + (0 : a^n)$.

Conversely, suppose that $N = < a^k > + (0 : a^n) \forall a \in N$. We shall prove that there exist natural numbers k and n such that $a^n \in < a^k > \Gamma a^n$. Since $e \in N$, there exist $t < a^k >$ and $\ell \in (0 : a^n)$ such that $e = t + \ell$. Hence for each $\alpha \in \Gamma$, $a^n = e \alpha a^n = (t + \ell) \alpha a^n = t \alpha a^n + \ell \alpha a^n = t \alpha a^n \in < a^k > \Gamma a^n$.

\[\Box\]

Definition 2.3.6. A Γ– near ring N is said to be left (resp. right) weakly π– regular if for every $x \in N$, $\alpha \in \Gamma$, there exists a positive integer n such that

$$x^n = x \alpha x \alpha \cdots \alpha x \in < x^n > \Gamma x^n.$$

Corollary 2.3.7. If N is a left quasi duo Γ– near ring with left unity then

(i) N is left weakly π– regular, if and only if $N = < a^k > + (0 : a^k) \forall a \in N$ and some natural number k.

(ii) \(N \) is left weakly regular if and only if \(N = \langle a \rangle + (0 : a) \forall a \in N \).

Proof. This is an easy consequence of Proposition 2.3.5.

Definition 2.3.8. A \(\Gamma \)-near ring \(N \) is said to be **strict left weakly regular** if \(a \in (N \Gamma a) \Gamma (N \Gamma a) \forall a \in N \).

Definition 2.3.9. A \(\Gamma \)-near ring \(N \) is said to be **strict left weakly \(\pi \)-regular** if \(a^n \in (N \Gamma a^n) \Gamma (N \Gamma a^n) \forall a \in N \).

Proposition 2.3.10. If \(N \) is a zero - symmetric and strict left quasi duo \(\Gamma \)-near ring with left unity \(e \), then

(i) \(N \) is strict left weakly regular if and only if \(N = N \Gamma a + (0 : a) \forall a \in N \).

(ii) \(N \) is strict left weakly \(\pi \)-regular if and only if \(N = N \Gamma a + (0 : a^n) \forall a \in N \) and some natural number \(n \).

Proof. (i) Suppose that \(N \) is strict left weakly regular and let \(a \in N \).

We have to prove that \(N = N \Gamma a + (0 : a) \). If not, there is a maximal left \(\Gamma \)-subgroup \(M \) of \(N \) such that \(N \Gamma a + (0 : a) \subseteq M \). Since \(N \) is strict left weakly regular, \(a \in (N \Gamma a) \Gamma (N \Gamma a) \). Hence \(a = x \Gamma a \) for some \(x \in N \Gamma a \Gamma N \). Since \(M \) is closed under multiplication from the right, \(N \Gamma a \Gamma N \subseteq M \) and consequently \(x \in M \). Since \(a = e \Gamma a \), it
follows that \(e - x \in (0 : a)\). Hence \(e = (e - x) + x \in M\). This is not possible and hence \(N = N\Gamma a + (0 : a)\).

Conversely, suppose that \(N = N\Gamma a + (0 : a)\) for every \(a \in N\). We shall prove that \(a \in (N\Gamma a) \Gamma (N\Gamma a)\). Now

\[
N = N\Gamma N = (N\Gamma a) \Gamma N + (0 : a) \Gamma N
\]

\[= N\Gamma a \Gamma N.
\]

Then \((N\Gamma a) \Gamma (N\Gamma a) = N\Gamma a\). Since \(N\) has left unity \(e\), \(a = e\alpha a \in N\Gamma a, \forall \alpha \in \Gamma\). Hence \(a \in (N\Gamma a) \Gamma (N\Gamma a)\).

(ii) Suppose that \(N\) is strict left weakly \(\pi\)-regular and \(a \in N\). We shall prove that \(N = N\Gamma a + (0 : a^n)\) where \(n\) is a natural number. If not, there is a maximal \(\Gamma\)-subgroup \(M\) of \(N\) such that \(N\Gamma a + (0 : a^n) \subseteq M\). By a similar argument as in (i), we can show that \(e \in M\) and consequently \(N = N\Gamma a + (0 : a^n)\).

Conversely, suppose that \(N = N\Gamma a + (0 : a^n)\) for every \(a \in N\) and some natural number \(n\). We have \(N\Gamma a^n = N\Gamma a^{n+1} \forall a \in N\). Let \(b \in N\) and \(b^n = x\Gamma b^{n+1}\) for some \(x \in N\). Now \(b^n = xab^nab = x\alpha (x\alpha b^{n+1}) ab = x^2\alpha b^nab^2 = \cdots = x^{n+1}\alpha b^nab^{n+1} \in N\Gamma b^n\Gamma b^n, \alpha \in \Gamma\), i.e., \(b^n \in N\Gamma b^n\Gamma N\Gamma b^n \forall b \in N\) and consequently \(N\) is strict left weakly \(\pi\)-regular.

Proposition 2.3.11. Let \(N\) be a \(\Gamma\)-near ring. If \(N\) is left weakly regular with left unity \(e\) and has the IFP, then \(N\) is simple if and only
if \(N \) is integral.

Proof. Suppose that \(N \) is an integral. We shall prove that \(N \) is simple. Let \(I \) be a non-zero ideal of \(N \). Then there exists an element \(x \neq 0 \in I \). Since \(N \) is left weakly regular, \(x \in \langle x \rangle \Gamma x \). Hence there exists \(t \in \langle x \rangle \) such that \(x = t\alpha x \ \forall \alpha \in \Gamma \). Since \(e \) is left identity, \(x = e\gamma x \ \forall \gamma \in \Gamma \). Therefore \(x = e\alpha x = t\alpha x \) and hence \((e-t)\alpha x = 0 \) for all \(\alpha \in \Gamma \). Since \(x \in I \), \(\langle x \rangle \subseteq I \). Therefore \(e \in I \). Consequently \(I = N \). Hence \(N \) is simple.

Conversely, suppose that \(N \) is simple. We shall prove that \(N \) is an integral. Let \(a, b \in N \) such that \(a\Gamma b = 0 \). If \(a = 0 \) then we are done. Suppose that \(a \neq 0 \). Since \(a \in (0 : b) \) and \(N \) has IFP, \((0 : b) \) is non-zero two sided ideal. Again since \(N \) is simple, \((0 : b) = N \) and consequently \(b \in (0 : b) \), this implies that \(\langle b \rangle \subseteq (0 : b) \). Since \(N \) is left weakly regular, \(b \in \langle b \rangle \Gamma b \). But \(\langle b \rangle \Gamma b \subseteq (0 : b) \Gamma b = 0 \). Hence \(b = 0 \).

2.4 Strongly regular \(\Gamma \)-near rings

In this section we shall prove that the characterization of strongly regular \(\Gamma \)-near ring. Throughout this section \(N \) stands for zero symmetric \(\Gamma \)-near ring.

Proposition 2.4.1. \(N \) is left strongly regular if and only if it is regular
and has the IFP.

Proof. From the definition of left strongly regular it follows that \(N \) is regular. First we have to prove that \(N \) is reduced. Let \(a\gamma a = 0 \), for all \(\gamma \in \Gamma \). Since \(N \) is left strongly regular, there exists \(x \in N \) such that

\[
a = x\gamma a^2 = x\gamma 0 = 0 \quad \forall \gamma \in \Gamma.
\]

Now to prove that IFP holds, let \(a, b \in N \) such that \(a\gamma b = 0 \). Our claim is that \(a\gamma m\gamma b = 0 \) \(\forall m \in N \). Now

\[
(a\gamma m\gamma b)^2 = (a\gamma m\gamma b)\gamma (a\gamma m\gamma b)
\]

\[
= a\gamma m\gamma (b\gamma a)\gamma m\gamma b
\]

\[
= a\gamma m\gamma 0\gamma m\gamma b = 0
\]

Since \(N \) is reduced, \(a\gamma m\gamma b = 0 \). Hence IFP holds.

Conversely, suppose that \(N \) is regular and has the IFP. For any idempotent \(f \) of \(N \) and any \(a \in N, \gamma \in \Gamma \), we have

\[
(a - a\gamma f)\gamma f = a\gamma f - (a\gamma f)\gamma f
\]

\[
= a\gamma f - a\gamma (f\gamma f)
\]

\[
= a\gamma f - a\gamma f = 0
\]

Since \(N \) has the IFP, for any \(m \in N \), we have \((a - a\gamma f)\gamma m\gamma f = 0\). Then

\[
a\gamma m\gamma f = (a\gamma f)\gamma (m\gamma f).
\]
Since $x\gamma a, a\gamma x$ are idempotent, we have,

\[x\gamma a = (x\gamma a) \gamma x\gamma a \]
\[= [x\gamma (x\gamma a)] \gamma [a\gamma (x\gamma a)] \]
\[= [(x\gamma x) \gamma a] \gamma a \]
\[= (x\gamma x) \gamma (a\gamma a) = x^2\gamma a^2 \]

and

\[a\gamma x = (a\gamma a) \gamma (x\gamma x) = a^2\gamma x^2. \quad (***) \]

Since N is regular, there exists, $x \in N$ such that $a = a\gamma_1 x\gamma_2 a$ for every pair of non zero elements γ_1 and γ_2 in Γ. It follows from (***)

\[a = a\gamma_1 x\gamma_2 a = a\gamma_1 x^2\gamma_2 a^2 = y\gamma_2 a^2, \quad \text{where} \quad y = a\gamma_1 x^2 \]

and

\[a\gamma_1 y\gamma_2 a = a\gamma_1 a\gamma_1 x^2\gamma_2 a = a\gamma_1 x\gamma_2 a = a. \]

Thus N is left strongly regular.

Corollary 2.4.2. N is left strongly regular if and only if it is regular and reduced.

Proof. This is clear, since any reduced Γ-near ring has the IFR.

Notation 2.4.3. $O_p(N)$ ($C_p(N)$) denote the set of all 0-prime (respectively completely prime) left ideals of N.

Lemma 2.4.4. If N is left strongly regular Γ-near ring, then $O_p(N) \subseteq C_p(N)$.

Proof. Let $I \in O_p(N)$. We shall prove that I is completely prime left ideal. Let $a \in I$ such that $a\alpha a \in I$, $\forall \alpha \in \Gamma$. Since N is left strongly regular, there exists $x \in N$ such that $a = x\beta a\alpha a$, $\forall \alpha \neq 0, \beta \neq 0 \in \Gamma$. Since I is left ideal, $a = x\beta a\alpha a, \in I$, $\forall \alpha \neq 0, \beta \neq 0 \in \Gamma$. Hence I is completely semi-prime. Hence $O_p(N) \subseteq C_p(N)$.

Definition 2.4.5. A left ideal I of N is said to be completely semiprime if $a\alpha a \in I, \forall \alpha \in \Gamma, a \in N$ implies that $a \in I^*$.

Theorem 2.4.6. The following statements are equivalent:

(i) N is left strongly regular;

(ii) N is 0-semiprime, $O_p(N) \subseteq C_p(N)$ and $\frac{N}{P}$ is regular for every completely prime ideal P of N;

(iii) $a \in (a^2)_\Gamma, a = a\gamma_1 x\gamma_2 a$ for some $x \in N$, for every pair of non-zero elements $\gamma_1, \gamma_2 \in \Gamma$ and for all $a \in N$;

(iv) Every Γ-subgroup of N is completely semiprime and $a = a\gamma_1 x\gamma_2 a$ for some $x \in N$, for every pair of non-zero elements $\gamma_1, \gamma_2 \in \Gamma$ and for all $a \in N$;

Proof. $(i) \Rightarrow (ii)$: Suppose that N is left strongly regular. First we shall prove that N is 0-semi prime. Let A be an ideal in N such that
$A \Gamma A = 0$. Our claim is that $A = 0$. Let $a \in A$. Since N is left strongly regular, there exists $y \in N$ such that $a = ya^2a$, $\forall \alpha \neq 0 \in \Gamma$. Since $a^2 \in A \Gamma A = 0$, $a = 0$ and hence $A = 0$. Therefore N is 0-semi prime.

Since N is left strongly regular, from Lemma 2.4.4, $O_p(N) \subseteq C_p(N)$.

Now we shall prove that N is regular. Let $x + p \in \frac{N}{P}$, where $x \in N$. Since N is regular, there exists $a \in N$ such that $x = x\alpha_1a\alpha_2x$ for every pair of non-zero elements α_1 and α_2 in Γ. Now

$$x + P = x\alpha_1a\alpha_2x + P$$

$$= (x\alpha_1a + P)\alpha_2 (x + P)$$

$$= (x + P)\alpha_1 (a + P)\alpha_2 (x + P)$$

Hence $\frac{N}{P}$ is regular.

$(ii) \Rightarrow (i)$: First we shall prove that N is reduced. Let $a \in N$ such that $a^2 = 0$. Let Q be any 0-prime ideal of N. Since $O_p(N) \subseteq C_p(N), Q$ is completely prime ideal and hence Q is completely semiprime. Since $a^2 = 0 \in Q$, it follows that $a \in Q$. Hence $a \in P_0(N)$. Since N is 0-semi prime, $P_0(N) = (0)$. Thus N is reduced. Now we shall prove that N is regular. Let $a \in N$ and P be any completely prime ideal of N. Then by our assumption $\frac{N}{P}$ is regular. Since $\frac{N}{P}$ is regular, there exists $x + P \in \frac{N}{P}$ such that
2.4. STRONGLY REGULAR Γ-NEAR RINGS

$a + P = (a + P)\gamma_1(x + P)\gamma_2(a + P)$ for every pair of non-zero elements γ_1 and γ_2 in Γ. Therefore $a - a\gamma_1 x\gamma_2 a + P = P$, i.e., $a - a\gamma_1 x\gamma_2 a \in P$. Hence $a - a\gamma_1 x\gamma_2 a \in \mathcal{P}_c(N)$. Since N is reduced, (0) is completely semiprime ideal in N. Hence $\mathcal{P}_c(N) = (0)$ and consequently $a = a\gamma_1 x\gamma_2 a$. Thus N is left strongly regular.

$(i) \Rightarrow (iii)$: Obvious.

$(iii) \Rightarrow (i)$: Suppose that $a \in < a^2 >_\Gamma$ for every $a \in N$. It follows that $< a >_\Gamma = < a^2 >_\Gamma = N\Gamma a = N\Gamma a^2$. Hence $a \in N\Gamma a^2$. Then there exists $x \in N$ such that $a = a\gamma_1 x\gamma_2 a$ for every pair of non-zero elements $\gamma_1, \gamma_2 \in \Gamma$ and for all $a \in N$. Thus N is left strongly regular.

$(i) \Rightarrow (iv)$: Suppose that N is left strongly regular. We shall prove that every $\Gamma-$ subgroup of N is completely semiprime. Let P be any $\Gamma-$ subgroup of N and suppose that $a \in N$ such that $a\alpha a \in P$, $\forall \alpha \in \Gamma$. Since N is left strongly regular, P is a two sided ideal and there exist $x \in N$ such that $a = x\gamma_1 a\gamma_2 a$, for every pair of non-zero elements γ_1 and γ_2 in Γ. Since P is a two sided ideal,

$$a = x\gamma_1 a\gamma_2 a \in P = P^*.$$

Hence P is completely semiprime.

$(iv) \Rightarrow (i)$: Suppose that every $\Gamma-$ subgroup of N is completely semiprime. We shall prove that N is left strongly regular. Let $a \in N$.

Since \(a^2 \in < a^2 >_\Gamma \) and \(< a^2 >_\Gamma \) is completely semiprime, we have
\(a \in < a^2 >_{\Gamma} \subseteq < a^2 >_{\Gamma} \). It is now easy to show that
\[< a >_{\Gamma} = < a^2 >_{\Gamma} = N\Gamma a = N\Gamma a^2. \]

Hence \(a \in N\Gamma a^2 \). Then there exists \(x \in N \) such that
\(a = x\alpha a\beta a, \forall \alpha \neq 0, \beta \neq 0 \in \Gamma \). Thus \(N \) is left strongly regular.

Definition 2.4.7. For a \(\Gamma \)-near ring \(N \), \(N_c \) denotes the constant part of \(N \), that is
\[N_c = \{ a \in N/a\gamma 0 = a \text{ for all } \gamma \in \Gamma \} \]. \(N \) is called **strongly reduced** if \(a \in N \) and \(\gamma \in \Gamma, a\gamma a \in N_c \) implies \(a \in N_c \).

Obviously \(N \) is strongly reduced if and only if for \(a \in N \) and any positive integer \(n, a^n \in N_c \) implies \(a \in N_c \).

\(N \) is said to be **left** (resp. right) **strongly \(\pi \)-regular** if for each \(a \in N \) and \(\gamma \in \Gamma \), there exists a positive integer \(n = n(a) \) and an element \(x \in N \) such that
\[a^n = x\gamma a^{n+1} \text{ (resp., } a^n = a^{n+1}\gamma x) \], equivalently
\[a^n = y\gamma a^{2n} \text{ (resp., } a^n = a^{2n}\gamma y) \] for some \(y \in N \). \(N \) is said to be **strongly \(\pi \)-regular** if it is both left and right strongly \(\pi \)-regular.

An element \(a \) of a \(\Gamma \)-near ring \(N \) is called **\(C_N \)-regular** if \(a \in \langle a\gamma a > \) for all \(\gamma \in \Gamma \). Hence, \(N \) will be a \(C \)-regular \(\Gamma \)-near ring if
\(a \in \langle a\gamma a > \) for all \(a \in N \) and \(\gamma \in \Gamma \). \(N \) is said to be **\(s \)-weakly regular** if for each \(a \in N, a \in \langle a\gamma a > \Gamma a \).

Lemma 2.4.8. Let \(N \) be a \(\Gamma \)-near ring. Then \(N \) is strongly reduced if and only if \(N \) is reduced.
2.4. STRONGLY REGULAR Γ'-NEAR RINGS

Proof. If \(a\gamma a \in N_c \) for all \(\gamma \in \Gamma \), then \(a\gamma a = a\gamma a\gamma 0 \). Since \(N \) is reduced, \(a\gamma a = 0 \) implies \(a = 0 \). By the zero symmetry of \(N \), \(a = 0 = a\gamma 0 = a\gamma a\gamma 0 = a\gamma a \in N_c \). Conversely, assume that \(a\gamma a = 0 \) for all \(\gamma \in \Gamma \). Then \(a\gamma a \in N_c \), hence \(a \in N_c \). Therefore \(a = a\gamma 0 = a\gamma 0\gamma a = a\gamma a \).

Proposition 2.4.9. Let \(N \) be a Γ'-near ring. Then we have the following properties.

(i) If \(N \) is s-weakly regular, then \(N \) is strongly reduced.

(ii) If \(N \) is C-regular, then \(N \) is strongly reduced. In particular, left or right strongly regular Γ'-near ring are strongly reduced.

(iii) Every integral Γ'-near ring \(N \) is strongly reduced.

Proof. (i). Suppose \(a \in N \) such that \(a^2 (= a\Gamma a) = 0 \). We have \(a = x\gamma a \) for some \(x \in a^2 \) and for all \(\gamma \in \Gamma \) so that \(a = 0 \). Thus \(a^2 = 0 \) implies \(a = 0 \) for every \(a \in N \). By Lemma 2.4.8, \(N \) is strongly reduced.

(ii) Suppose \(a \in a\gamma a \) for all \(a \in N \) and \(\gamma \in \Gamma \). If \(a\gamma a \in N_c \), then \(a \in a\gamma a \subseteq N_c \).

(iii) Let \(a \in N \) with \(a\gamma a \in N_c \) for all \(\gamma \in \Gamma \). Then \((a - a\gamma a)\gamma a = a\gamma a - a\gamma a\gamma 0\gamma a = a\gamma a - a\gamma a = 0 \) and hence \(a = a\gamma a \in N_c \).
Proposition 2.4.10. Let N be a strongly reduced Γ-near ring. Then we have the following properties:

(i) N has the IFP;

(ii) If N is simple then it is integral;

(iii) If $a\gamma b^n \in N_c$ for any positive integer n and $\gamma \in \Gamma$, then

\[\{a\Gamma b, b\Gamma a\} \cup a\Gamma N\Gamma b \cup b\Gamma N\Gamma a \subseteq N_c. \]

In particular, $a\Gamma b \in N_c$ implies $b\Gamma a \in N_c, a\Gamma N\Gamma b \subseteq N_c$ and $b\Gamma N\Gamma a \subseteq N_c$.

Proof. (i) If $a\gamma b = 0$ for $a, b \in N$ and $\gamma \in \Gamma$, then $(b\gamma a)^2 = (b\gamma a) \gamma (b\gamma a) = b\gamma 0$ since N is zero symmetric. By Lemma 2.4.8, $b\gamma a = 0$. Now for $\gamma_1, \gamma_2 \in \Gamma$ and $x \in N, (a\gamma_1 x\gamma_2 b)^2 = (a\gamma_1 x\gamma_2 b) \gamma (a\gamma_1 x\gamma_2 b) = (a\gamma_1 x) \gamma_2 0 \gamma_1 x\gamma_2 b = a\gamma_1 x\gamma_2 0 = 0$. This implies that $a\gamma_1 x\gamma_2 b = 0$.

(ii) Assume that N is simple. Let $a, b \in N$ such that $a\gamma b = 0$ for $\gamma \in \Gamma$. If $a = 0$, then we are done. Suppose $a \neq 0$. By (1), $(0 : b)_\gamma = \{x \in N/x\gamma b = 0\}$ is a two sided ideal. Now $0 \neq a \in (0 : b)_\gamma$. Since N is simple, we have $(0 : b)_\gamma = N$ and consequently $b\gamma b = 0$. From Lemma 2.4.8, it follows that $b = 0$.

(iii) First, suppose $a\gamma b \in N_c$ for all $\gamma \in \Gamma$. Then $(b\gamma a)^2 = b\gamma a\gamma b\gamma a = b\gamma a\gamma b\gamma 0\gamma a = b\gamma a\gamma b\gamma 0 \in N_c$. Since N is strongly reduced, we have $b\gamma a \in N_c$. Then $x\gamma b\gamma a \in N_c$ for each $x \in N$, hence
\[(a\gamma x\gamma b)^2 = a\gamma x\gamma b a\gamma x\gamma b = a\gamma x\gamma b a\gamma 0 \gamma x\gamma b = a\gamma x\gamma b a\gamma 0 = a\gamma x\gamma b a \in N_c.\]

Therefore \[a\gamma x\gamma b \in N_c\] for each \(x \in N\). Since \(b\gamma a \in N_c, b\Gamma N\gamma a \subseteq N_c.\]

Now suppose \(a\gamma b^n \in N_c.\) Then \((a\gamma b)^n \in N_c\) by the above argument. Since \(N\) is strongly reduced, \(a\gamma b \in N_c\). Hence by the first paragraph, the claim is proved. \(\blacksquare\)

Definition 2.4.11. A \(\Gamma\)-near ring \(N\) is called a weakly left (resp., right) duo if for every \(a \in N\) there is a positive integer \(n = n(a)\) such that \(N\Gamma a^n\) (resp., \(a^n\Gamma N\)) is an ideal of \(N\).

Proposition 2.4.12. Let \(N\) be a weakly left duo and strict left weakly \(\pi\)-regular. Then \(N\) is left strongly \(\pi\)-regular.

Proof. Let \(a \in N\). There exist positive integers \(m\) and \(n\) such that \(N\Gamma a^n = N\Gamma a^n\Gamma N\) and \(N\Gamma a^m = N\Gamma a^m\Gamma N\Gamma a^m.\) Observe that

\[N\Gamma a^{2n} = N\Gamma a^n \Gamma a^n = N\Gamma a^n \Gamma N \Gamma a^n = N\Gamma a^n \Gamma N \Gamma a^n \Gamma N = N\Gamma a^n \Gamma a^n \Gamma N = N\Gamma a^{2n} \Gamma N.\]

An induction argument yields \(N\Gamma a^{kn} = N\Gamma a^{kn} \Gamma N\) for any positive integer \(k.\) Also \(N\Gamma a^{2m} = (N\Gamma a^m) \Gamma a^m = (N\Gamma a^m \Gamma N \Gamma a^m) \Gamma a^m = N\Gamma a^m \Gamma a^{2m}.\) Again an induction argument yields \(N\Gamma a^{km} = N\Gamma a^m \Gamma N \Gamma a^{km}\) for any positive integer \(k.\)
Now using the above observations, we have that

\[N\Gamma a^{mn}\Gamma N\Gamma a^{mn} = N\Gamma a^{mn}\Gamma a^{mn} = N\Gamma a^{2m}. \]

Also we have that

\[
\begin{align*}
N\Gamma a^{mn}\Gamma N\Gamma a^{mn} &= N\Gamma a^{mn}\Gamma (N\Gamma a^{m}\Gamma N\Gamma a^{mn}) \\
&= N\Gamma a^{mn}\Gamma a^{m}\Gamma N\Gamma a^{mn} \\
&= N\Gamma a^{mn+m}\Gamma N\Gamma a^{mn} \\
&= N\Gamma a^{mn+m}\Gamma (N\Gamma a^{m}\Gamma N\Gamma a^{mn}) \\
&= \cdots \\
&= N\Gamma a^{mn+2m}\Gamma N\Gamma a^{mn} \\
&= \cdots \\
&= N\Gamma a^{mn+mn}\Gamma N\Gamma a^{mn} \\
&= (N\Gamma a^{mn}\Gamma N\Gamma a^{mn})\Gamma N\Gamma a^{mn} \\
&= (N\Gamma a^{mn}\Gamma N\Gamma a^{mn}\Gamma N\Gamma a^{mn})\Gamma N\Gamma a^{mn} \\
&= (N\Gamma a^{mn}\Gamma N\Gamma a^{mn})\Gamma (N\Gamma a^{mn}\Gamma N\Gamma a^{mn}) \\
&= N\Gamma a^{2mn}\Gamma N\Gamma a^{2mn} \\
&= N\Gamma a^{4mn} \subseteq N\Gamma a^{2mn+1} \subseteq N\Gamma a^{2m}.
\end{align*}
\]

Hence \(N\Gamma a^{2mn} = N\Gamma a^{2mn+1} \). Therefore \(N \) is left strongly \(\pi \)-regular \(\Gamma \)-near ring.

Since left strongly regular \(\Gamma \)-near ring are strict left weakly \(\pi \)-regular, we have the following corollary.
Corollary 2.4.13. Let N be weakly left duo Γ-near ring. Then the following statements are equivalent:

(i) N is strict left weakly π-regular;

(ii) N is left strongly π-regular.

Theorem 2.4.14. Let N be a strongly reduced Γ-near ring. Then the following statements are equivalent:

(i) N is left pseudo π-regular;

(ii) N is weakly regular.

Proof.

(i) \Rightarrow (ii): Assume N is left pseudo π regular. Let $a \in N$. Then there exists $x \in <a>$ and a natural number n such that $a^{n+1} = x\gamma a^{n+1}$ for all $\gamma \in \Gamma$. We shall show that $a = x\gamma a = a\gamma x$ for some $x \in <a>$ and for all $\gamma \in \Gamma$. If $n = 0$, then immediately $a = x\gamma a$. Now $(a - a\gamma x)\gamma a = a\gamma a - a\gamma x\gamma a = a\gamma a - a\gamma \gamma = 0 \in N_c$. Hence $(a - a\gamma x)^2 = (a - a\gamma x)\gamma (a - a\gamma x) = a\gamma (a - a\gamma x) - a\gamma x\gamma (a - a\gamma x) \in N_c$ by Property (iii) of Proposition 2.4.10, and so $(a - a\gamma x) \in N_c$. Therefore $a - a\gamma x = (a - a\gamma x)\gamma 0 = (a - a\gamma x)\gamma 0\gamma a = (a - a\gamma x)\gamma a = 0$.

If $n \geq 1$, $(a - x\gamma a)\gamma a^n = 0$. Hence $(a - x\gamma a)\gamma a \in N_c$ by Property (iii) of Proposition 2.4.10. Hence, $(a - x\gamma a)\gamma a = $
\[(a - x\gamma a) \gamma a\gamma 0\gamma a^{n-1} = (a - x\gamma a) \gamma a^n = 0\] and so \[(a - a\gamma x)^2 \in N_c\]
by Property (iii) of Proposition 2.4.10. Since \(N\) is strongly reduced, \(a - x\gamma a \in N_c\). Then \(a - x\gamma a = (a - x\gamma a) \gamma 0 = (a - x\gamma a) \gamma 0\gamma a = (a - x\gamma a) \gamma a = 0\), that is \(a = x\gamma a\). Obviously as above \(a = a\gamma x\) for some \(x \in \langle a \rangle\) . Hence \(N\) is weakly regular.

(ii) \(\Rightarrow\)(i): Clearly if \(N\) is left weakly regular, then \(N\) is left pseudo \(\pi\)-regular.

\textbf{Definition 2.4.15.} For any subset \(A\) of a \(\Gamma\)-near ring \(N\), we write
\[\sqrt{A} = \{a \in N/a^n (= a\Gamma a\Gamma \cdots a\Gamma a) \in A \text{ for some } n \geq 1\} .\] Clearly \(A \subseteq \sqrt{A}\).

Here we give some equivalent characterizations of left strongly regular \(\Gamma\)-near ring.

\textbf{Theorem 2.4.16.} Let \(N\) be a \(\Gamma\)-near ring. Then the following statements are equivalent:

(i) \(N\) is left strongly regular;

(ii) \(A = \sqrt{A}\) for every \(\Gamma\)-subgroup \(A\) of \(N\);

(iii) \(a = \langle a^2 \rangle_\Gamma\) (the \(\Gamma\)-subgroup generated by \(a^2 \in N\)) for every \(a \in N\);

(iv) \(N\) is strongly reduced and left strongly \(\pi\)-regular.
Proof. (i) ⇒(ii): Let \(A \) be a \(\Gamma \)- subgroup of \(N \). If \(a \in \sqrt{A} \), then \(a^n \in A \) for some \(n \geq 1 \). Since \(N \) is left strongly regular, \(a = x \gamma a^2 = x^2 \gamma a^2 = \cdots = x^{n-1} \gamma a^n \in A \) for all \(\gamma \in \Gamma \). Thus \(A = \sqrt{A} \).

(ii) ⇒(iii): Let \(0 \neq a \in N \). Now \(a^3 \in N \Gamma a^2 \) so that \(a \in \sqrt{N \Gamma a^2} = N \Gamma a^2 \). Thus \(N \) is left strongly regular.

(i) ⇒(iii): Obvious.

(iii) ⇒(i): Suppose \(a \in < a^2 >_\Gamma \) for every \(a \in N \). Since \(a \in < a^2 >_\Gamma \), it is easy to see that \(< a >_\Gamma = < a^2 >_\Gamma = N \Gamma a = N \Gamma a^2 \). Hence \(a \in N \Gamma a^2 \) and hence \(N \) is left strongly regular.

(i) ⇒(iv): It is follows from the Property (ii) of Proposition 2.4.9.

(iv) ⇒(i): Assume that \(a^n = x \gamma a^{n+1} \) for some \(n \geq 1 \) and for all \(\gamma \in \Gamma \). By Theorem 2.4.14 it follows that \(a = x \gamma a^2 \). Thus \(N \) is left strongly regular.

Definition 2.4.17. A \(\Gamma \)- near ring \(N \) is said to be a \((P_0) \)- \(\Gamma \)- near ring if for each \(a \in N \), there exists an integer \(n > 1 \) such that \(a = a^n (= a \Gamma a \Gamma \cdots a \Gamma a) \). Obviously a \((P_0)\)-\(\Gamma \)- near ring is strongly reduced.

The following result is an immediate consequence of Theorem 2.4.16.

Corollary 2.4.18. Let \(N \) be a finite \(\Gamma \)-near ring. Then the following statements are equivalent: