CHAPTER 4

Strongly Prime Gamma - Near Rings

4.1 Introduction

Strongly prime rings were introduced by Handelmann and Lawrence [25] and in [24] Groenewald and Heyman investigated the upper radical determined by the class of all strongly prime rings. In [22], Groenewald introduced the concept of strongly prime to near-rings and in [18], G.L. Booth, N.J. Groenewald and S. Veldsman introduced the concept of equiprime near-rings.

In this chapter we extend the concepts of strongly prime and equiprime to Γ - near rings. In the second section we give some
characterizations of strongly prime \(\Gamma \)- near rings. In the third section we show that the strongly prime radical \(\mathcal{P}_s(N) \) of \(N \) coincides with \(\mathcal{P}_s(L)^+ \) where \(\mathcal{P}_s(L) \) is strongly prime radical of the left operator near-ring \(L \) of \(N \). Finally in the last section we shall prove that the equiprime radical \(\mathcal{P}_e(N) \) of \(N \) coincides with \(\mathcal{P}_e(L)^+ \) where \(\mathcal{P}_e(L) \) is the equiprime radical of the left operator near-ring \(L \) of \(N \).

4.2 Strongly prime \(\Gamma \)- near rings

In this section we shall prove some equivalent conditions for strongly prime \(\Gamma \)- near rings.

Definition 4.2.1. Let \(N \) be a \(\Gamma \)- near ring, then the right \(\alpha \)- annihilator of a subset \(A \) of \(N \) is \(r_{\alpha}(A) = \{x \in N / A\alpha x = 0\} \).

Definition 4.2.2. A \(\Gamma \)- near ring \(N \) is said to be strongly prime if for each \(a \neq 0 \in N \), there exists a finite subset \(F \) of \(N \) such that \(r_{\alpha}(a\Gamma F) = 0 \ \forall \alpha \in \Gamma \). \(F \) is called an insulator for \(a \) in \(N \).

Lemma 4.2.3. If a \(\Gamma \)- near ring \(N \) is strongly prime, then \(N \) is prime.

Proof. Let \(0 \neq A, B \triangleleft N \). We shall show that \(A\Gamma B \neq 0 \). Since \(A \neq 0 \) there exists a finite subset \(F \) of \(A \) such that \(r_{\alpha}(F) = 0 \), for each \(\alpha \in \Gamma \). Hence for each \(0 \neq b \in B \) we have \(F\Gamma b \neq 0 \). Therefore \(A\Gamma B \neq 0 \). \(\blacksquare \)
Definition 4.2.4. A Γ-near ring N is said to be left(right) weakly semiprime if $[x, \Gamma] \neq 0 ([\Gamma, x] \neq 0) \ \forall x \neq 0 \in N$.

N is said to be weakly semiprime if it is both left and right weakly semiprime.

Proposition 4.2.5. If N is strongly prime Γ-near ring, then N is weakly semiprime Γ-near ring.

Proof. Suppose that N is a strongly prime Γ-near ring. We shall prove that N is a weakly semiprime Γ-near ring. Let $x \neq 0 \in N$. It is enough to prove that $[x, \Gamma] \neq 0$ and $[\Gamma, x] \neq 0$. Suppose that $[x, \Gamma] = 0$. Since N is a strongly prime Γ-near ring, for every $\beta \in \Gamma$ there exists a finite subset $S_\beta(x)$ such that for $b \in N, \{x\beta c\alpha b/c \in S_\beta(x)\} = 0, \forall \alpha \in \Gamma$ implies that $b = 0$. Now $x\beta c\alpha x = [x, \beta] c\alpha x = 0c\alpha x = 0, \forall \beta, c \in \Gamma, c \in S_\beta(x)$. Hence $x = 0$, a contradiction. Thus N is a weakly semiprime Γ-near ring.

Proposition 4.2.6. If a Γ-near ring N is strongly prime then, the left operator near-ring L is strongly prime.

Proof. Let $\sum_i [x_i, \alpha_i] \neq 0 \in L$, then there exists $x \in N$ such that $\sum_i [x_i, \alpha_i] x \neq 0$, i.e., $\sum_i x_i \alpha_i x \neq 0$. Since N is strongly prime, there exists a finite subset $F = \{a_1, a_2, \ldots, a_n\} (\text{say})$ such that for any
Fix $\alpha, \beta \in \Gamma$. Consider $G = \{[x_1, \alpha_1, \beta], \ldots, [x_n, \alpha_n, \beta]\}$. Our claim is that G is an insulator for $\sum_i [x_i, \alpha_i]$. Let $\sum_j [y_j, \beta_j] \in L$ such that $\sum_i [x_i, \alpha_i] \sum_j [y_j, \beta_j] = 0$. We shall prove that $\sum_j [y_j, \beta_j] = 0$.

Now
\[\sum_i [x_i, \alpha_i] G \sum_j [y_j, \beta_j] = 0 \]

implies
\[\sum_i [x_i, \alpha_i] [x_\alpha k, \beta] \sum_j [y_j, \beta_j] = 0 \quad \forall k = 1, 2, \ldots, n. \]

Hence
\[\left(\sum_i [x_i, \alpha_i] [x_\alpha k, \beta] \sum_j [y_j, \beta_j] \right) z = 0 \quad \forall z \in N; \quad k = 1, 2, \ldots, n. \]

This implies that
\[\sum_i [x_i, \alpha_i] [x_\alpha k, \beta] \sum_j [y_j, \beta_j] z = 0 \quad \forall z \in N; \quad k = 1, 2, \ldots, n. \]

Hence
\[\sum_i x_i \alpha_i x_\alpha k \beta \sum_j y_j \beta_j z = 0 \quad \forall z \in N; \quad k = 1, 2, \ldots, n. \]

By (4.2.1), $\sum_j y_j \beta_j z = 0 \quad \forall z \in N$. Therefore $\sum_j [y_j, \beta_j] = 0$. Thus L is strongly prime.
Theorem 4.2.7. Let \(N \) be a left weakly semiprime \(\Gamma - \) near ring having no zero divisor, then \(N \) is strongly prime if and only if \(L \) is strongly prime.

Proof. Suppose that \(L \) is strongly prime. To prove \(N \) is strongly prime, let \(a \neq 0 \in N \). Since \(N \) is left weakly semiprime, \([x, \Gamma] \neq 0 \) and since \(L \) is strongly prime, there exists a finite subset \(F = \left\{ \sum_{j=1}^{n} [y_{jk}, \beta_{jk}] / k = 1, 2, \ldots m \right\} \) (say) such that for any \(\sum_{\ell} [z_{\ell}, \delta_{\ell}] \in L \):

\[
[x, \Gamma] F \sum_{\ell} [z_{\ell}, \delta_{\ell}] = 0 \implies \sum_{\ell} [z_{\ell}, \delta_{\ell}] = 0 \quad (4.2.2)
\]

Consider \(F' = \left\{ y_{jk} \beta_{jk} x / j = 1, 2, \ldots, n; k = 1, 2, \ldots m \right\} \). Our claim is that \(F' \) is an insulator for \(x \). Let \(y \in N \) such that \(x \Gamma F' \Gamma y = 0 \). We shall prove that \(y = 0 \). Now \(x \Gamma F' \Gamma y = 0 \) implies \(x \alpha y_{jk} \beta_{jk} x \beta y = 0 \) \(\forall j = 1, 2, \ldots n; k = 1, 2, \ldots m \), for all \(\alpha, \beta \in \Gamma \). Therefore

\[
[x, \Gamma] [x \alpha y_{jk} \beta_{jk} x \beta y, \Gamma] = 0 \quad \forall j = 1, 2, \ldots n; k = 1, 2, \ldots m.
\]

Hence

\[
[x, \alpha] [y_{jk}, \beta_{jk}] [x \beta y, \Gamma] = 0 \quad \forall k = 1, 2, \ldots m.
\]

By (4.2.2), \([x \beta y, \Gamma] = 0 \). Therefore \(x \beta y = 0 \). Since \(N \) is weakly semiprime and \(N \) has no zero divisor, \(y = 0 \) and consequently \(F' \) is an insulator for \(x \). Therefore \(N \) is strongly prime.

Converse part follows from Proposition 4.2.6. \(\blacksquare \)
We recall that for $X \subseteq N, \langle X \rangle$ is constructed by the following recursive rules

(i) $a \in \langle X \rangle \ \forall a \in X$.

(ii) If $b, c \in \langle X \rangle$, then $b + c \in \langle X \rangle$

(iii) If $b \in \langle X \rangle$ and $x, y \in N, \alpha \in \Gamma$, then $x \alpha (b + y) - x \alpha y \in \langle X \rangle$.

(iv) If $b \in \langle X \rangle$ and $x \in N, \alpha \in \Gamma$, then $b \alpha x \in \langle X \rangle$

(v) If $b \in \langle X \rangle$ and $x \in N$, then $x - b \in \langle X \rangle$

(vi) Nothing else is in $\langle X \rangle$.

Definition 4.2.8. Suppose $X \subseteq N$ and $d \in \langle X \rangle$. We call a sequence s_1, s_2, \ldots, s_n of elements of N, a generating sequence of length m for d with respect to X. If $s_1 \in X$, $s_m = d, \alpha \in \Gamma$ and for each $i = 2, 3, \ldots m$, one of the following applies

\[s_i \in X \]

\[s_i = s_j + s_\ell, 1 \leq j, \ell < i \]

\[s_i = s_j \alpha x, 1 \leq j < i \text{ and } x \in N \]

\[s_i = x \alpha (s_j + y) - x \alpha y, 1 \leq j < i \text{ and } x, y \in N \]

\[s_i = x + s_j - x, 1 \leq j < i \text{ and } x \in N \]

The complexity of d with respect to X denoted by $C_X (d)$, is the
Lemma 4.2.9. Let N be a Γ–near ring. If $X \neq 0$ and $X \Gamma N = 0$, then $\langle X \rangle \Gamma N = 0$.

Proof. Let $X \Gamma N = 0$ and suppose $x \in \langle X \rangle$ arbitrary. We use induction on $C_X(x)$. If $C_X(x) = 1$, then $x \in X$ and from our assumption we have $X \Gamma N = 0$. Suppose $y \Gamma N = 0 \forall y \in \langle X \rangle$ such that $C_X(y) < n$ and let $C_X(x) = n$. We have the following possibilities:

(i) $x = a + b$ where $a, b \in \langle X \rangle$ and $C_X(a), C_X(b) < n$. Hence

$$x \Gamma N = (a + b) \Gamma N$$

$$= a \Gamma N + b \Gamma N$$

$$= 0$$

(ii) $x = a \alpha n$ where $a \in \langle X \rangle$, $n \in N$, $\alpha \in \Gamma$ and $C_X(a) < n$. Hence

$$x \Gamma N = (a \alpha n) \Gamma N$$

$$\subseteq a \Gamma N$$

$$= 0$$

(iii) $x = a \alpha (d + b) - a \alpha b$ where $d \in \langle X \rangle$ and $a, b \in N$, $\alpha \beta \in \Gamma$ with $C_X(d) < n$. If m is arbitrary element of N, then

$$x \beta m = (a \alpha (d + b) - a \alpha b) \beta m$$

length of a generating sequence of least length for d with respect to X.

Lemma 4.2.9. Let N be a Γ–near ring. If $X \neq 0$ and $X \Gamma N = 0$, then $\langle X \rangle \Gamma N = 0$.
\[= a\alpha (d\beta m + b\beta m) - (a\alpha b) \beta m = a\alpha b\beta m - a\alpha b\beta m = 0. \]

Hence \(x\Gamma N = 0 \).

(iv) If \(x = a + b - a \) where \(b \in \langle X \rangle, a \in N, \alpha \in \Gamma \) and \(C_X (b) < n \).

Let \(m \in N \), then

\[x\alpha m = (a + b - a) \alpha m = a\alpha m + b\alpha m - a\alpha m = 0. \]

This completes the proof. \(\blacksquare \)

Corollary 4.2.10. If every non zero ideal of a \(\Gamma \)-near ring \(N \) contains a subset \(F \) with \(r_\alpha (F) = 0, \forall \alpha \in \Gamma \), then for each \(a \in N, a \neq 0, \beta \in \Gamma \), there is a \(y \in N \) with \(a\beta y \neq 0 \).

Proof. Let \(a \neq 0 \in N \) and suppose \(F \) is a subset of \(\langle a \rangle \) such that \(r_\alpha (F) = 0, \forall \alpha \in \Gamma \). For every \(n \neq 0 \in N \), we have \(F\Gamma n \neq 0 \) and therefore \(\langle a \rangle \Gamma N \neq 0 \). From Lemma 4.2.9, there exists \(y \neq 0 \in N \) such that \(a\beta y \neq 0 \), for all \(\beta \in \Gamma \). \(\blacksquare \)

Theorem 4.2.11. Let \(N \) be a \(\Gamma \)-near ring, then \(N \) is strongly prime if and only if every non zero ideal of \(N \) contains a finite subset \(F \) with \(r_\alpha (F) = 0, \forall \alpha \in \Gamma \).
4.2. STRONGLY PRIME Γ—NEAR RINGS

Proof. Let $I \neq 0$ be an ideal in N and $a \neq 0 \in I$. Since N is strongly prime, there exists a finite subset $F \subseteq N$ such that $r_\alpha (a \Gamma F) = 0$, $\forall \alpha \in \Gamma$. Put $F_1 = a \Gamma F$. Hence F_1 is a finite subset subset of I with $r_\alpha (F_1) = 0$, $\forall \alpha \in \Gamma$.

Conversely, let $a \neq 0 \in N$, then $\langle a \rangle \neq 0$. From our assumption, there exists a finite subset F of $\langle a \rangle$ such that $r_\alpha (F) = 0$, $\forall \alpha \in \Gamma$. It follows from the Corollary 4.2.10 that there exists $y \in N$ with $a \beta y \neq 0$ for all $\beta \in \Gamma$. Again we use our assumption, we can find a finite subset $G_1 = \{g_1, g_2, \ldots, g_n\} \subseteq \langle a \beta y \rangle$ with $r_\alpha (G) = 0$, $\forall \alpha, \beta \in \Gamma$. For each i, let $s_{i_1}, s_{i_2}, \ldots, s_{i_m}$ be the corresponding generating sequence of g_i. Each of these sequence involve a finite number of terms of the form $a \beta y$ or $(a \beta y) \gamma t_k, t_k \in N$, $\forall \alpha, \beta, \gamma \in \Gamma$. Let $G_1 = \{a \beta y, (a \beta y) \gamma t_k / these occur in the generating sequence of an element of G\}$. Clearly G_1 is finite and $r_\alpha (G_1) \subseteq r_\alpha (G) = 0$, $\forall \alpha \in \Gamma$. Take $H = \{x/a \beta x \in G_1, \forall \beta \in \Gamma\}$. Our claim is that H is an insulator for a. Now $r_\alpha (G_1) = 0$ implies that for any $n \in N, G_1 \alpha n = 0$, $\forall \alpha \in \Gamma$ implies $n = 0$. Since $a \Gamma H \subseteq G_1$, we have H is an insulator for a and consequently N is strongly prime. ■

Proposition 4.2.12. Let N be zero symmetric Γ—near ring then the following are equivalent.

(i) N is strongly prime Γ—near ring.
(ii) Every non zero right $\Gamma-$ subgroup of N contains a finite subset F such that $r_\alpha (F) = 0, \ \forall \alpha \in \Gamma$.

(iii) Every non zero right ideal of N contains a finite subset F such that $r_\alpha (F) = 0, \ \forall \alpha \in \Gamma$.

(iv) Every non zero ideal of N contains a finite subset F such that $r_\alpha (F) = 0, \ \forall \alpha \in \Gamma$.

Proof. $(i) \Rightarrow (ii)$: Let $I \neq 0$ be a right $\Gamma-$ subgroup of N and let $a \neq 0 \in I$. Since N is strongly prime, a has an insulator F such that $r_\alpha (a \Gamma F) = 0, \ \forall \alpha \in \Gamma$. Let $G = a \Gamma F$. Then $G \subseteq I$ and $r_\alpha (G) = 0, \ \forall \alpha \in \Gamma$.

$(ii) \Rightarrow (iii) \Rightarrow (iv)$ is obvious.

$(iv) \Rightarrow (i)$ follows from Theorem 4.2.11.

Proposition 4.2.13. Let N be a zero symmetric $\Gamma-$ near ring with d.c.c. on right annihilators, then N is 3-prime if and only if N is strongly prime.

Proof. Suppose N is strongly prime. To prove N is 3-prime, let $a, b \in N$ such that $a \neq 0$ and $b \neq 0$. Since N is strongly prime, there exists a finite subset F of N such that $a \Gamma F \Gamma b \neq 0$. Hence $a \Gamma N \Gamma b \neq 0$. Conversely, let $I \neq 0$ be an ideal in N and for each $\alpha \in \Gamma$, consider
the collection of right α— annihilators $\{r_\alpha (F)\}$ where F runs over all finite subset of I. From our hypothesis, there exists a minimal element $M = r_\alpha (F_0)$. If $M \neq 0$, let $m \neq 0 \in M$ and $a \neq 0 \in I$. Since N is 3-prime, there exists $n \neq 0 \in N$ such that $a\beta n \gamma m \neq 0$ for all $\beta, \gamma \in \Gamma$. Hence $a\gamma n \neq 0$. Let $S_\alpha = r_\alpha (F_0 \cup \{a\gamma n\}) \ \forall \alpha \in F$. Now $m \in M$ but $m \notin S_\alpha$ implies that S_α is smaller than M, a contraction. This forces that $M = (0)$. Hence for every non zero ideal I of N, there exists a finite subset F such that $r_\alpha (F) = 0 \ \forall \alpha \in \Gamma$ and consequently N is strongly prime.

4.3 Radicals of strongly prime Γ— near rings.

In this section we shall prove that the strongly prime radical $\mathcal{P}_s (N)$ of N coincides with $\mathcal{P}_s (L)^+$ where $\mathcal{P}_s (L)$ is the strongly prime radical of the left operator near - ring L of N.

Definition 4.3.1. An ideal I of a Γ— near ring N is said to be strongly prime if for each $a \notin I$, there exists a finite subset F such that for any $b \in N$, $a\Gamma F \Gamma b \subseteq I$ implies that $b \in I$. F is called an insulator for a.

Proposition 4.3.2. Let N be a Γ— near ring. If P is a strongly prime ideal of N, then $P^{+\prime} = \{l \in L/\ell x \in P \ \forall x \in N\}$ is a strongly prime ideal of L.

Proof. Suppose that P is a strongly prime ideal of N. We shall prove that $P^{+\prime}$ is a strongly prime ideal of L. Let $\sum_i [x_i, \alpha_i] \notin P^{+\prime}$, then there exists $x \in N$ such that $\sum_i [x_i, \alpha_i] x \notin P$, that is $\sum_i x_i \alpha_i x \notin P$. Since P is strongly prime in N, there exists a finite subset $F = \{f_1, f_2, \cdots, f_n\}$ of N such that for any $b \in N$,

$$\sum_i x_i \alpha_i x \Gamma F b \subseteq P \text{ implies } b \in P.$$

(4.3.1)

Fix $\alpha, \beta \in \Gamma$.

Consider the collection $F' = \{[x\alpha f_1, \beta], \cdots, [x\alpha f_n, \beta]\}$. Our claim is that F' is an insulator for $\sum_i [x_i, \alpha_i]$. Let $\sum_j [y_j, \beta_j] \in L$ such that $\sum_i [x_i, \alpha_i] F' \sum_j [y_j, \beta_j] \subseteq P^{+\prime}$. To prove $\sum_j [y_i, \beta_i] \in P^{+\prime}$. Now

$$\sum_i [x_i, \alpha_i] F' \sum_j [y_j, \beta_j] \subseteq P^{+\prime}$$

implies

$$\sum_i [x_i, \alpha_i] [x\alpha f_k, \beta] \sum_j [y_j, \beta_j] \in P^{+\prime} \quad \forall \; k = 1, 2, \cdots, n,$$

i.e.,

$$\left(\sum_i [x_i, \alpha_i] [x\alpha f_k, \beta] \sum_j [y_j, \beta_j] \right) z \in P \quad \forall \; z \in N; \; k = 1, 2, \cdots, n.$$

Hence

$$\sum_i x_i \alpha_i x \Gamma F \sum_j y_j \beta_j z \subseteq P \quad \forall \; z \in N.$$

By (4.3.1), $\sum_j y_j \beta_j z \in P$ \quad $\forall \; z \in N$. i.e., $\sum_j [y_j, \beta_j] z \in P$ \quad $\forall z \in N$.

Hence $\sum_j [y_j, \beta_j] \in P^{+\prime}$ and therefore F' is an insulator for $\sum_i [x_i, \alpha_i]$ and consequently $P^{+\prime}$ is a strongly prime ideal of L.

\blacksquare
Proposition 4.3.3. Let N be a distributive strongly 2-primal Γ-near ring with strong left unity. If Q is a strongly prime ideal of L, then $Q^+ = \{x \in N/ [x, \alpha] \in Q \quad \forall \alpha \in \Gamma\}$ is a strongly prime ideal of N.

Proof. Suppose Q is a strongly prime ideal of L. We shall prove that Q^+ is a strongly prime ideal of N. Let $x \notin Q^+$, then there exists $\alpha \in \Gamma$ such that $[x, \alpha] \notin Q$. Since Q is a strongly prime ideal of L, there exists a finite subset $F = \left\{ \sum_{j=1}^{n} [y_{jk}, \beta_{jk}] / k = 1, 2, \ldots, m \right\}$ (say) such that for any $\sum_{\ell} [z_{\ell}, \delta_{\ell}] \subseteq L$,

$$[x, \alpha] F \sum_{\ell} [z_{\ell}, \delta_{\ell}] \subseteq Q \text{ implies that } \sum_{\ell} [z_{\ell}, \delta_{\ell}] \in Q.$$ (4.3.2)

Consider $F' = \{y_{jk} \beta_{jk} x / j = 1, 2, \ldots, n; k = 1, 2, \ldots, m\}$. Our claim is that F' is an insulator for x. Let $a \in N$ such that $x \Gamma F' \Gamma a \subseteq Q^+$. To prove $a \in Q^+$. Now $x \Gamma F' \Gamma a \subseteq Q^+$ implies

$$\left[x \Gamma F' \Gamma a, \Gamma \right] \subseteq Q,$$

i.e., $[x \alpha y_{jk} \beta_{jk} x \beta a, \gamma] \subseteq Q$,

$\forall j = 1, 2, \ldots, n; k = 1, 2, \ldots, m$ and $\forall \alpha, \beta, \gamma \in \Gamma$. This implies that

$$[x, \alpha] F [x \beta a, \gamma] \subseteq Q.$$ (4.3.3)

By (4.3.2) $[x \beta a, \gamma] \subseteq Q$. Now since Q is strongly prime in L, Q is prime in L. By Proposition 1.1.26, Q^+ is prime ideal of N. Since N
is strongly 2-primal, \(Q^+ \) is completely prime in \(N \). Hence \(x\gamma a \in Q^+ \) and \(x \notin Q^+ \) implies \(a \in Q^+ \). Thus \(Q^+ \) is strongly prime in \(N \).

Proposition 4.3.4. Let \(N \) be a distributive strongly 2-primal \(\Gamma \)-near ring with strong left unity and \(L \), a left operator near-ring of \(N \). Then \(\mathcal{P}_s(N) = \mathcal{P}_s(L)^+ \).

Proof. Let \(P \) be a strongly prime ideal of \(L \). Then by Proposition 4.3.3, \(P^+ \) is a strongly prime ideal of \(N \). Moreover \((P^+)^+ = P \) by Theorem 1.1.27. Suppose \(Q \) is a strongly prime ideal in \(A^+ \), then by Proposition 4.3.2, \(Q^+ \) is strongly prime in \(L \) and \((Q^+)^+ = Q \) by Theorem 1.1.27. Thus the mapping \(P \mapsto P^+ \) defines a 1-1 correspondence between the set of strongly prime ideals of \(L \) and \(N \).

Hence \(\mathcal{P}_s(L)^+ = (\cap P)^+ = \cap P^+ = \mathcal{P}_s(N) \).

4.4 Equiprime radicals of \(\Gamma \)-near rings

In this section we shall prove that the equiprime radical \(\mathcal{P}_e(N) \) of \(N \) coincides with \(\mathcal{P}_e(L)^+ \) where \(\mathcal{P}_e(L) \) is the equiprime radical of left operator near-ring \(L \) of \(N \).

Definition 4.4.1. Let \(N \) be a \(\Gamma \)-near ring, and \(P \) be an ideal in \(N \). Then \(P \) is said to be **equiprime** if \(a, x, y \in N, a \notin P, a\alpha\beta x - a\alpha\beta y \in P \) \(\forall n \in N, \alpha, \beta \in \Gamma \) implies \(x - y \in P \).
Proposition 4.4.2. Let N be a Γ-near ring. If P is an equiprime ideal of N, then $P^+ = \{ \ell \in L/\ell x \in P \ \forall x \in N \}$ is an equiprime ideal of L.

Proof. Let $\ell \notin P^+$ and $\ell', \ell'' \in N$ such that $\ell' - \ell'' \notin P^+$. From definition of P^+, there exist $a, b \in N$ such that $\ell a \notin P$ and $(\ell' - \ell'') b \notin P$, that is $\ell a \notin P$ and $\ell' b - \ell'' b \notin P$. From the hypothesis, there exists $c \in N$ such that

\[
(\ell a) \alpha \beta (\ell' b) - (\ell a) \alpha \beta (\ell'' b) \notin P, \ \forall \alpha, \beta \in \Gamma
\]

i.e., $[\ell a, \alpha] [c, \beta] \ell' b - [\ell a, \alpha] [c, \beta] \ell'' b \notin P, \ \forall \alpha, \beta \in \Gamma$

i.e., $\ell [a, \alpha] [c, \beta] \ell' b - \ell [a, \alpha] [c, \beta] \ell'' b \notin P, \ \forall \alpha, \beta \in \Gamma$.

Hence

\[
(\ell [a \alpha, \beta] \ell' - \ell [a \alpha, \beta] \ell'') b \notin P, \ \forall \alpha, \beta \in \Gamma.
\]

This proves that

\[
\ell [a \alpha, \beta] \ell' - \ell [a \alpha, \beta] \ell'' \notin P^+, \ \forall \alpha, \beta \in \Gamma
\]

and consequently P^+ is an equiprime ideal of L.

Proposition 4.4.3. Let N be a Γ-near ring. If Q is an equiprime ideal of L, then $Q^+ = \{ x \in N/ [x, \alpha] \in Q \ \forall \alpha \in \Gamma \}$ is an equiprime ideal of N.

Proof. Let \(x \notin Q^+ \) and \(a, b \in N \) such that \(a - b \notin Q^+ \). We claim that \(x \Gamma N \Gamma a - x \Gamma N \Gamma b \notin Q^+ \). Since \(x \notin Q^+ \) and \(a - b \notin Q^+ \), then there exist \(\alpha, \beta \in \Gamma \) such that \([x, \alpha] \notin Q \) and \([a - b, \beta] \notin Q \) implies that \([x, \alpha] \notin Q \) and \([a, \beta] - [b, \beta] \notin Q \). Since \(Q \) is a equiprime ideal in \(L \), there exists \(\ell = \sum_i [y_i, \beta_i] \in L \) such that \([x, \alpha] \ell [a, \beta] - [x, \alpha] \ell [b, \beta] \notin Q \). Hence \([x \alpha a - x \alpha b, \beta] \notin Q \). This implies that \(x \alpha a - x \alpha b \notin Q^+ \).

\[
i.e., \quad x \alpha \sum_i [y_i, \beta_i] a - x \alpha \sum_i [y_i, \beta_i] b \notin Q^+
\]
i.e., \(x \alpha \sum_i y_i \beta_i a - x \alpha \sum_i y_i \beta_i b \notin Q^+ \).

But clearly \(x \alpha \sum_i y_i \beta_i a - x \alpha \sum_i y_i \beta_i b \in x \Gamma N \Gamma a - x \Gamma N \Gamma b \). Thus \(x \Gamma N \Gamma a - x \Gamma N \Gamma b \notin Q^+ \) and consequently \(Q^+ \) is an equiprime ideal of \(N \).

\[\textbf{Theorem 4.4.4.} \text{Let } N \text{ be a } \Gamma-\text{near ring with left operator near-ring } L, \text{ then } \mathcal{P}_e(L)^+ = \mathcal{P}_e(N).\]

Proof. Let \(P \) be an equiprime ideal of \(L \). Then by Proposition 4.4.3, \(P^+ \) is an equiprime ideal of \(N \). Moreover \((P^+)^{++} = P \) by Theorem 1.1.27. Suppose \(Q \) is an equiprime ideal in \(N \), then by Proposition 4.4.2, \(Q^{++} \) is an equiprime ideal in \(L \) and \((Q^{++})^+ = Q \) by Theorem 1.1.27. Thus the mapping \(P \to P^+ \) defines a 1-1 correspondence between the set of equiprime ideals of \(L \) and \(N \).

Hence \(\mathcal{P}_e(L)^+ = (\cap P)^+ = \cap P^+ = \mathcal{P}_e(N) \).