CONTENTS

Preface i
Glossary of terms xvi
Symbols xviii

Chapter 1. Introduction 1-39
 1.1 Nanomaterials 1
 1.2 Classification of nanomaterials 3
 1.3 Properties of Nanomaterials 5
 1.4 Importance of nano materials 7
 1.5 Synthesis of nano materials 7
 1.5.1 Vapor – phase synthesis 9
 1.5.2 Liquid phase synthesis 10
 1.5.3 Solid – state phase synthesis 14
 1.6 Combustion Synthesis (CS) 16
 1.7 Luminescence 17
 1.8 Types of Luminescence by Nature of Excitation 21
 1.9 Rare-earth ions as luminescent centres 24
 1.10 Phosphors 26
 1.10.1 Advantages of Nanophosphor 26
 1.10.2 Applications of Nanophosphor Particles in Solid State Lighting Devices 27
 1.11 Scope and objectives of the present work 29
 1.12 Review of literature 34
 Reference 36

Chapter 2. Experimental (methodology and materials) 40 - 73
 2.1 Materials 40
 2.2 Combustion chamber 41
 2.2.1 Preparation of Diformyl hydrazine (C$_2$H$_4$N$_2$O$_2$; DFH) 42
 2.2.2 Collection of latex of Calotropis Gigantea fuel 42
 2.3 Calculation of stoichiometry of redox mixture 44
 2.4 Synthesis
 2.4.1 Preparation of pure Y$_2$SiO$_5$ nanopowders with different organic fuels 47
 2.4.2 Synthesis Y$_2$SiO$_5$ nanophosphor by chemical and green synthesis route
 2.4.2.1 Preparation of Y$_2$SiO$_5$:Sm$^{3+}$ (1-9 mol%) nanophosphor with different fluxes by chemical route 49
 2.4.2.2 Preparation of Y$_2$SiO$_5$:Dy$^{3+}$ (1-9 mol%) nano phosphor via chemical route 49
 2.4.2.3 Preparation of Y$_2$SiO$_5$:Dy$^{3+}$ (3 mol%):Eu$^{3+}$ (0.5-5.5 mol%) via chemical route 50
 2.4.2.4 Preparation of Y$_2$SiO$_5$:Ce$^{3+}$(0.5-7 mol%) nano phosphor via bio-mediated route 50
 2.4.2.5 Preparation of Y$_2$SiO$_5$:Ce$^{3+}$(1mol%): Sm$^{3+}$ 50
(0.2-1 mol%) nano phosphor via biomediated route

2.4.2.6 Preparation of Y\textsubscript{2}SiO\textsubscript{5}:Pr3+ (1-9 mol%) nano phosphor by bio-mediated route

2.4.2.7 Preparation of Y\textsubscript{2}SiO\textsubscript{5}:Eu3+ (1-7 mol%) nano phosphor by bio-mediated route

2.5 Characterization techniques

2.5.1 Powder X-Ray diffraction (PXRD) 51

2.5.2 Crystallite size measurement from the line broadening in PXRD 52

2.6 Scanning electron microscopy 57

2.7 Transmission electron microscopy 59

2.8 UV-Visible absorption spectroscopy 62

2.9 Fourier transform infrared (FT-IR) spectroscopy 64

2.10 Creation of defects

2.10.1 Gamma (γ) irradiation 66

2.10.2 UV irradiation 67

2.11 Thermoluminescence (TL) studies 68

2.12 Photoluminescence (PL) studies 70

2.13 Raman spectroscopy 72

References 73

Chapter 3. Effect of fuels on pure Y\textsubscript{2}SiO\textsubscript{5} nano powders and effect of fluxes on Sm3+ doped Y\textsubscript{2}SiO\textsubscript{5} nano phosphors

3.1 Effect of fuels on structural and luminescence properties of pure Y\textsubscript{2}SiO\textsubscript{5} nano powders 74 - 96

3.1.1. Introduction 74

3.1.2. Results and Discussion

3.1.2.1 Powder X-ray diffraction (PXRD) 77

3.1.2.2 Scanning electron microscopy (SEM) 80

3.1.2.3. UV-Vis spectroscopy and Band gap measurements 82

3.1.2.4 Photoluminescence (PL) studies 84

3.1.2.5 Thermoluminescence (TL) studies 87

3.1.3 Conclusions 91

References 92

3.2 Effect of flux on morphology and luminescence properties of Sm3+ (1-9 mol %) doped Y\textsubscript{2}SiO\textsubscript{5} nano phosphor 97 - 123

3.2.1. Introduction 97

3.2.2. Results and discussion

3.2.2.1 Powder X-ray diffraction studies (PXRD) 99

3.2.2.2 Morphological studies (SEM) 104

3.2.2.3 Photoluminescence (PL) studies 106

3.2.3 Conclusions 118

References 119
Chapter 4. Spectroscopic and Luminescence studies of doped and co-doped Y_2SiO_5 nanophosphor: chemical and green synthesis route

4.1 Spectroscopic and Luminescence studies of Dy^{3+} doped Y_2SiO_5 nanophosphor: chemical synthesis route

4.1.1. Introduction 124
4.1.2. Results and Discussion 125
4.1.2.1 Powder X-ray diffraction (PXRD) 125
4.1.2.2 Morphological analysis (SEM and TEM) 127
4.1.2.3 UV-Vis absorption spectroscopy 129
4.1.2.4 Fourier transform infrared spectroscopy (FTIR) 131
4.1.2.5 Photoluminescence (PL) studies 132
4.1.3. Conclusions 137
References 138

4.2 Spectroscopic and Luminescence studies of Eu^{3+} co-doped Y_2SiO_5:Dy^{3+} nanophosphors: chemical synthesis route

4.2.1. Introduction 141
4.2.2. Results and discussion
4.2.2.1 Powder X-ray diffraction (PXRD) 142
4.2.2.2 Morphological studies 145
4.2.2.3 Photoluminescence (PL) studies 147
4.2.2.4 Energy transfer between Dy$^{3+}$ and Eu$^{3+}$ in Dy$^{3+}$/Eu$^{3+}$ co-doped Y_2SiO_5 nano phosphors 149
4.2.3. Conclusions 153
References 154

4.3 Spectroscopic and Luminescence studies of Ce^{3+} doped Y_2SiO_5 nanophosphors using calotropis gigantea as fuel

4.3.1 Introduction 157
4.3.2 Results and discussion
4.4.2.1 Powder X-ray diffraction (PXRD) 159
4.4.2.2 Morphological analysis (SEM) 162
4.4.2.3 Fourier transform infrared spectroscopy (FTIR) 163
4.4.2.4 UV-Visible absorption spectroscopy 163
4.4.2.5 Photoluminescence (PL) studies 165
4.3.3. Conclusions 170
References 171

4.4 Spectroscopic and Luminescence studies of Sm$^{3+}$ co-doped Y_2SiO_5:Ce$^{3+}$ phosphors using calotropis gigantea as fuel

4.4.1 Introduction 173
4.4.2 Results and discussion
4.4.2.1 Powder X-ray diffraction (PXRD) 174
4.4.2.2 Morphological analysis (SEM) 176
4.4.2.3 Fourier transform infrared spectroscopy 177
Chapter 5. Spectroscopic and Luminescence studies of Pr$^{3+}$ and Eu$^{3+}$ doped Y$_2$SiO$_5$ nanophosphors: bio mediated synthesis route (calotropis gigantea)

5.1 Spectroscopic and Luminescence studies Pr$^{3+}$ doped Y$_2$SiO$_5$ nanophosphors using calotropis gigantea as fuel

5.1.1 Introduction
5.1.2 Results and discussion
 5.1.2.1 Powder X-ray diffraction (PXRD) analysis
 5.1.2.2 Morphological studies
 5.1.2.3 Fourier transform infrared spectroscopy (FTIR)
 5.1.2.4 Photoluminescence (PL) studies
 5.1.2.5 Judd–Ofelt analysis
5.1.3 Conclusions
References

5.2 Spectroscopic and Luminescence studies Eu$^{3+}$ doped Y$_2$SiO$_5$ nanophosphors using calotropis gigantea as fuel

5.2.1 Introduction
5.2.2 Results and discussion
 5.2.2.1. Powder X-ray diffraction (PXRD)
 5.2.2.2. Morphological studies
 5.2.2.3. Fourier transform infrared spectroscopy (FTIR)
 5.2.2.4. Raman spectroscopic analysis
 5.2.2.5. UV – Visible analysis
 5.2.2.6. Photoluminescence (PL) studies
5.2.3 Conclusions
References

Chapter 6. Summary and Scope for future prospectus

6.1 Summary
6.2 Scope for future prospectus
List of publications
Reprints of Published papers