CONCLUSION

Considering the severity of measles in the wake of children mortality and morbidity and in the absence of any other effective mode of controlling this disease, vaccination of the susceptible population is the only way left out.

Vaccine manufacturing involves high input cost of raw material, manpower, building and infra structure, plant and machinery, etc. To produce the vaccine in huge quantities and of excellent quality is the primary objective in venturing the production of such type of vaccine.

Human diploid cells (MRC-5) and Edmonston-Zagreb measles virus strain has proved to be the best available vaccine in the world. However, to produce the vaccine on human diploid cells is an extremely costly proposition. The work undertaken, therefore, was aimed at bringing about improvements in the manufacture of measles vaccine to yield a financially feasible and technically superior measles vaccine.

A new system of manufacturing measles vaccine is postulated which involves cultivating the cells in a system called cell factory and then coupling this with producing the virus in rolling culture system. This system offers all the cost saving benefits for manufacturing cells and also gives significantly high titre of measles virus to prepare the multi-dose formulations in large quantities. A new stabilizer for the vaccine is also tried which gives a more thermostable vaccine. All in all the experiments carried out and the results obtained therein has given rise to a new methodology for manufacturing of measles vaccine.