CONTENTS

PUBLICATIONS i

ABSTRACT ii

ABBREVIATIONS xii

CHAPTER 1. LIPASES IN BIOTRANSFORMATIONS

1.1 Introduction 1

1.1.1 Receptor Theory and Pharmaceuticals 1

1.1.2 Asymmetric Synthesis versus Kinetic Resolution 2

1.1.3 Enantiomeric Purity Determination 3

1.2 Biotransformation 4

1.2.1 Classes of Enzymes 8

1.2.2 Hydrolases (Lipases) 8

1.3 Lipases as Biocatalyst in Organic Chemistry 14

1.3.1 Transformation of Prochiral and meso Substrates 15

1.3.2 Kinetically Controlled Transformations of Racemic Substrates 20

1.3.3 Intra- and Intermolecular Transesterification of Hydroxy Acids 24

1.3.4 Enzyme Catalyzed Acylation and Deacylation of Polyhydroxy Compounds (Sugars) 26

1.3.5 Nitrogen Containing Substrates; Formation of Peptide Bonds 28

1.3.6 Organometallic Substrates 30

1.4 INDUSTRIAL APPLICATIONS OF LIPASES 31

1.4.1 Food Industry 31

1.4.2 Lipases in Detergents 33

1.4.3 Lipases in Paper Manufacture 33

1.4.4 Lipases in Medicine 33

1.5 Recent Trends and Future in Lipase Research and Applications 34
CHAPTER 2. LIPASE CATALYZED CHEMO-/REGIO- AND ENANTIOSELECTIVE HYDROLYSIS OF METHYL O-ACETYL-MANDELATES AND threo-ETHYL 2,3,-DIACETOXY-3-ARYL PROPIONATES

2.1 Introduction 45

2.2 Strategy 45

2.3 Methyl Mandelates: Background 46

2.4 Present Work 49

2.4.1 Results and Discussion: Methylmandelates 49

2.5 (+)-Diltiazem: Background 52

2.5.1 Synthetic Approaches for the Intermediates 54

2.5.2 Enzymatic Routes 56

2.5.3 Conversion of (2S, 3R)-PGA Ester and (2S, 3R)- and (2R, 3S)-Diols to (+)-Diltiazem 59

2.6 Rationale For Present Work 61

2.7 Results 62

2.7.1 (±)-threo-ethyl 2,3-dihydroxy-3-(4-methoxyphenyl) propionates 62

2.7.2 Enzymatic Acylation of (±)-threo-Ethyl 3-(4-methoxyphenyl)-2,3-Dihydroxypropionate 66

2.7.3 (±)-threo-Ethyl 2,3-dihydroxy-3-phenylpropionates 67
CHAPTER 3. MECHANISTIC STUDIES IN LIPASE CATALYZED HYDROLYSIS OF VICINAL DIACETATES: CORRELATING THE ACTUAL AND OBSERVED REGIOSELECTIVITY / ENANTIOSELECTIVITY

3.1 Introduction

3.2 Definition of The Problem

3.2.1 Strategy

3.3 Results on Actual and Observed Regioselectivity

3.3.1 Actual and Observed Regioselectivity in AmanoPS Reactions

3.3.2 Actual and Observed Regioselectivity in PLAP Reactions

3.4 Discussion on Actual and Observed Regioselectivity

3.4.1 Actual and Observed Regioselectivity in AmanoPS Reactions

3.4.2 Actual and Observed Regioselectivity in PLAP Reactions

3.5 APPLICATION TO meso DIACETATES

3.5.1 Background

3.5.2 Results on Actual and Observed Enantioselectivity in meso Diacetates

3.5.3 Discussion on Actual and Observed Enantioselectivities in meso Diacetates

3.6 Summary
CHAPTER 4. A FACILE SYNTHESIS OF RAS FARNESYL-PROTEIN TRANSFERASE INHIBITOR CHAETOMELLIC ACID A: SYNTHESIS AND AN ATTEMPTED ENZYMATIC RESOLUTION OF ITS CHIRAL ANALOGUES

4.1 Introduction

4.1.1 Maleic Anhydride Derivatives and their Applications 153

4.1.2 Alkylmethylmaleic Anhydrides: Chaetomelic Anhydride A 158

4.2 Present Work: Results and Discussion

4.2.1 Chiral Analogues of Chaetomelic Acid A 171

4.3 Summary 173

4.4 Experimental 174

4.5 References 193

ERRATUM 196