Abreviations and Notations:

Abreviations:

SMF - Submerged fermentation
SSF - Solid substrate fermentation
FPA - Filter paper activity
CMCase - Carboxy methyl cellulase activity
NCIM - National collection of industrial microorganisms
MTCC - Microbial type culture collection
IS - Inoculum size
NL - Nutrient level

Greek Characters:

\(\alpha \) - Thermal diffusivity \(\frac{m^2}{sec} \)
\(\beta \) - Dimensionless quantity \(\beta'q \)
\(\beta' \) - Dimensionless quantity \(\frac{\mu L X_0}{C_p \rho \tau_0} \)
\(\gamma \) - Constant given by \(\Delta H_c - \frac{\Delta H_a}{Y_{cell}} \)
\(\Delta H_c \) - Heat of combustion of cells \(\frac{J}{g_{cell}} \)
\(\Delta H_a \) - Heat of combustion of cellulose \(\frac{J}{g_{cell}} \)
\(\theta \) - Dimensionless time \(\frac{nt}{\Delta} \)
\(\mu \) - specific growth rate \(hr^{-1} \)

Notations:

\(a \) - Constant given by \(\frac{K}{b \sqrt{\mu}} \)
\(a_w \) - Water activity
\(b \) - Constant given by \(\frac{1}{1 - \frac{t_o}{t_{of} - t_{of} + \Delta t}} \)
\(c_p \) - Effective specific heat of the bed \(\frac{J}{g K} \)
h - Natural convection heat transfer coefficient \(\frac{W}{m^3 K} \)

k - Constant thermal conductivity of bed \(\frac{W}{m K} \)

l - Linear dimension (side of fermentor) used in 'h' calculation, m

q - Dimensionless quantity \(\frac{l^2 h}{l} \)

s - Substrate concentration mg/ml

t, \(t_f \) - Time of fermentation.

x - A value given by \(\sqrt{q} \)

A - Cross sectional area of bed m²

\(D_p \) - Average substrate particle size (microns)

L - Total bed height m

\(L_c \) - Critical bed depth m

\(N_{Bi} \) - Biot number \(\left(\frac{h}{k} \right) \)

pH - Initial culture pH

Q - Microbial heat generation rate per unit mass \(\frac{W}{g} \)

T - Temperature °C

\(\bar{T} \) - Dimensionless temperature \(\frac{T}{T_0} \)

\(T_c \) - Critical temperature °C

\(\bar{T}_c \) - Dimensionless critical temperature \(\frac{T_c}{T_0} \)

\(T_0 \) - Initial temperature °C

X - Biomass concentration mg/ml

\(X_{max} \) - Maximum biomass concentration mg/ml

\(X_0 \) - Initial biomass concentration mg/ml

\(\bar{X} \) - Dimensionless biomass concentration \(\frac{X}{X_0} \)

\(Y_{X/s} \) - Biomass yield coefficient \(\frac{X_{cell}}{g_{substrate}} \)

Z - Variable bed depth m

\(\bar{Z} \) - Dimensionless variable bed depth \(\frac{Z}{L} \)